[1] |
CHRISTOPHE B, BARANGE M, SUBASINGHE R, et al. Feeding 9 billion by 2050-putting fish back on the menu[J]. Food security, 2015, 7(2):261-274.
doi: 10.1007/s12571-015-0427-z
URL
|
[2] |
TIAN C, LI L, LIANG X F, et al. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi)[J]. Genetica, 2016, 144(4):445-455.
doi: 10.1007/s10709-016-9913-2
pmid: 27393605
|
[3] |
MABEE P, BALHOFF J P, DAHDUL W M, et al. 500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton[J]. Journal of applied ichthyology, 2012, 28(3):300-305.
pmid: 22736877
|
[4] |
WALKER J A. A general model of functional constraints on phenotypic evolution[J]. The American naturalist, 2007, 170(5):681-689.
pmid: 17926290
|
[5] |
FERNANDES A F A, TURRA E M, ALVARENGA R R D, et al. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia[J]. Computers and electronics in agriculture, 2020, 170:105274.
doi: 10.1016/j.compag.2020.105274
URL
|
[6] |
MILLA S, PASQUET A, MOHAJER L E, et al. How domestication alters fish phenotypes[J]. Reviews in aquaculture, 2021, 13(1):388-405.
doi: 10.1111/raq.v13.1
URL
|
[7] |
GJEDREM T, ROBINSON N. Advances by selective breeding for aquatic species: a review[J]. Agricultural sciences, 2014, 5(12):1152-1158.
doi: 10.4236/as.2014.512125
URL
|
[8] |
MUÑOZ-BENAVENT P, PUIG-PONS V, ANDREU-GARCÍA G, et al. Automatic bluefin tuna sizing with a combined acoustic and optical sensor[J]. Sensors, 2020, 20(18):5294.
doi: 10.3390/s20185294
URL
|
[9] |
ALABA S Y, NABI M M, SHAH C, et al. Class-aware fish species recognition using deep learning for an imbalanced dataset[J]. Sensors, 2022, 22(21):8268.
doi: 10.3390/s22218268
URL
|
[10] |
MATHIASSEN J R, MISIMI E, STVIK S O, et al. Computer vision in the fish industry-science direct[J]. Computer vision technology in the food and beverage industries, 2012, 81: 352-378.
|
[11] |
ZHANG L, WANG J, DUAN Q. Estimation for fish mass using image analysis and neural network[J]. Computers and electronics in agriculture, 2020, 173:105439.
doi: 10.1016/j.compag.2020.105439
URL
|
[12] |
陈子桂, 王培培, 覃俊奇, 等. 广西野生鲤与建鲤的遗传多样性分析[J]. 淡水渔业, 2018, 48(3):3-6.
|
[13] |
李龑, 姜晓娜, 葛彦龙, 等. 温度对两种鲤耗氧率、排氨率及窒息点的影响[J]. 淡水渔业, 2023, 53(2):61-68.
|
[14] |
许艺兰, 陈忠, 覃俊奇, 等. 全州禾花鲤主要生长性状的遗传参数估计[J]. 广西科学, 2022, 29(4):801-808.
|
[15] |
马冬梅, 朱华平, 樊佳佳, 等. 软骨与正常华南鲤肌肉营养成分的比较分析[J]. 大连海洋大学学报, 2019, 34(3):381-386.
|
[16] |
JI D, SU X, YAO J, et al. Genetic diversity and genetic differentiation of populations of Golden-Backed Carp (Cyprinus carpio var.Jinbei) in traditional rice fields in Guizhou, China[J]. Animals, 2022, 12(11):1377.
doi: 10.3390/ani12111377
URL
|
[17] |
赵亚辉, 孙智闲. 鲤科鱼类形态学测度和物种描述规范——以鮈亚科鱼类为例[J]. Bio-protocol, 2021:1010622.
|
[18] |
DEEP B V, DASH R. Underwater fish species recognition using deep learning techniques[C]. 2019 6th international conference on signal processing and integrated networks (SPIN). IEEE, 2019:665-669.
|
[19] |
HNIN T T, LYNN K T. Fish classification based on robust features selection using machine learning techniques[C]. Genetic and evolutionary computing: proceedings of the ninth international conference on genetic and evolutionary computing, August 26-28,2015,Yangon, Myanmar-Volume 1.Springer international publishing, 2016:237-245.
|
[20] |
SHORTIS M R, RAVANBAKHSH M, SHAFAIT F, et al. Progress in the automated identification, measurement, and counting of fish in underwater image sequences[J]. Marine technology society journal, 2016, 50(1):4-16.
|
[21] |
IVERSEN M, FINSTAD B, MCKINLEY R S, et al. The efficacy of metomidate, clove oil, Aqui-STM and Benzoak as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity[J]. Aquaculture, 2003, 221(1-4):549-566.
doi: 10.1016/S0044-8486(03)00111-X
URL
|
[22] |
HOUSTON R D, BEAN T P, MACQUEEN D J, et al. Harnessing genomics to fast-track genetic improvement in aquaculture[J]. Nature reviews genetics, 2020, 21(7):389-409.
doi: 10.1038/s41576-020-0227-y
pmid: 32300217
|
[23] |
AL-JUBOURI Q, AL-NUAIMY W, AL-TAEE M, et al. Towards automated length-estimation of free-swimming fish using machine vision[C]. 2017 14th international multi-conference on systems, signals & devices (SSD). IEEE, 2017:469-474.
|
[24] |
HAO M, YU H, LI D. The measurement of fish size by machine vision-a review[C]. Computer and computing technologies in agriculture IX:9th IFIP WG 5.14 international conference, CCTA 2015, Beijing, China, September 27-30, 2015, revised selected papers, Part II 9. Springer international publishing, 2016:15-32.
|
[25] |
HONG H, YANG X, YOU Z, et al. Visual quality detection of aquatic products using machine vision[J]. Aquacultural engineering, 2014, 63(63):62-71.
doi: 10.1016/j.aquaeng.2014.10.003
URL
|
[26] |
LIAO Y H, ZHOU C W, LIU W Z, et al. 3Dphenofish: Application for two-and three-dimensional fish morphological phenotype extraction from point cloud analysis[J]. Zoological research, 2021, 42(4):492.
|
[27] |
HU X, LIU Y, ZHAO Z, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and electronics in agriculture, 2021, 185(8):106135.
doi: 10.1016/j.compag.2021.106135
URL
|