| [1] Prassad S, Singh A, Joshi H C. Ethanol as an alternative fuel from agricultural, industrial and urban residues[J].Resour Conserv Recycl,2007,50:1-39. [2] Barakat A, de Vries H, Rouau X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review[J].Bioresource technology,2013,13:362-373.
 [3] Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi[J].Biotechnology advances,2009,27(2):185- 194.
 [4] 彭姿,谭兴和,熊兴耀,等.木质纤维素糖化前预处理新技术研究进展[J].中国酿造,2013,1:1-4.
 [5] Okamoto K, Kanawaku R, Masumoto M, et al. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus[J]. Enzyme and Microbial Technology,2012,50(2):96-100.
 [6] 王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报,2002,29(3):90-93.
 [7] Kerem Z, Jensen K A, Hammel K E. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone- driven fenton reaction[J].FEBS letters,1999,446(1):49-54.
 [8] Yelle D J, Ralph J, Lu F, et al. Hammel KE. Evidence for cleavage of lignin by a brown rot basidiomycete[J].Environmental Microbiology,2008,10:1844-1849.
 [9] Yelle D J, Wei D, Ralph J, et al. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta[J].Environmental Microbiology, 2011,13:1091-1100.
 [10] Arantes V, Milagres A M F, Filley T R, et al. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton- based reactions[J].Journal of Industrial Microbiology and Biotechnology,2011,38:541-555.
 [11] Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator- mediated cellulose degradation and binding of iron by cellulose[J].Journal of biotechnology,2001,87(1):43-57.
 [12] Ray M J, Leak D J, Spanu P D, et al. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production[J].Biomass and Bioenergy,2010,34 (8):1257-1262.
 [13] Green III F, Highley T L. Mechanism of brown-rot decay: paradigm or paradox[J].International Biodeterioration & Biodegradation,1997, 39(2):113-124.
 [14] Jensen Jr K A, Ryan Z C, Wymelenberg A V, et al. An NADH: quinone oxidoreductase active during biodegradation by the brownrot basidiomycete Gloeophyllum trabeum[J].Applied and environmental microbiology,2002,68(6):2699-2703.
 [15] Wan C X, Li Y B. Fungal pretreatment of lignocellulosic biomass[J]. Biotechnology Advances,2012,30:1447-1457.
 [16] 胡秋龙,熊兴耀,谭琳,等.木质纤维素生物质预处理技术的研究进展[J].中国农学通报,2011,10:1-7.
 [17] 张元晶,魏刚,张小冬,等.木质纤维素生物质预处理技术研究现状[J].中国农学通报,2012,11:272-277.
 [18] Schilling J S, Ai J, Blanchette R A, et al. Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis[J].Bioresource Technology,2012,116:147-154.
 [19] Michael J Ray, David J, Leak, Pietro D. Spanu, et al. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production[J].Biomass and bioenergy, 2010,34:1257-1262.
 [20] Jake Tewalt, Jonathan Schilling. Assessment of saccharification efficacy in the cellulose system of the brown rot fungus Gloeophyllum trabeum[J].Applied microbiology and biotechnology, 2010,86:1785-1793.
 [21] Deepa Deswal, Rishi Gupta, Preeti Nandal, et al. Fungal pretreatment improves amenability of lignocellulosic materialfor its saccharification to sugars[J].Carbohydrate Polymers,2014,99:264- 269.
 [22] M. Saritha, Anju Arora, Lata Nain. Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification[J]. Bioresource Technology,2012,10:459-465.
 [23] J.S. Van Dyk, B.I. Pletsch. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes- Factors affecting enzymes, conversion and synergy[J]. Biotechnology Advance,2012,30:1458-1480.
 [24] Kenji Okamoto, Ryuichi Kanawaku, Masaru Masumoto. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus [J].Enzyme and Microbiology Technology,2012,50:96-100.
 [25] Okamoto K, Nitta Y, Maekawa N, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Tr ametes hirsuta[J].Enzyme and Microbiology Technology,2011,48: 273-277.
 [26] Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept[J].Progress in Energy and Combustion Science,2012,38(4):522-550.
 [27] Ribbons RW. Chemicals from lignin[J].Philos Trans R Soc Lond Ser,1987,321:485-494.
 [28] Deswal D, Khasa Y P, Kuhad R C. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation[J].Bioresource technology,2011,102(10): 6065-6072.
 [29] Cohen R., Suzuki M R, Hammel K E. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum[J].Applied Environment Microbiology,2005,71:2412–2417.
 [30] Yoon J J, Kim Y K. Degradation of crystalline cellulose by the brown rot basidiomycete Fomitopsis palustris[J].Journal of Microbiology,2005,43:487-492.
 [31] Machuca A, Ferraz A. Hydrolytic and oxidative enzymes produced by white-and brown-rot fungi during Eucalyptus grandis decay in solid medium[J].Enzyme and Microbial Technology,2001,29:386- 391.
 [32] Howell C, Hastrup A C S, Jara R, et al. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure [J].Cellulose,2011,18:1179-1190.
 [33] Howell C, Hastrup A C S, Goodell B, et al. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi[J]. International Biodeterioration and Biodegradation,2009,63:414-419.
 [34] Anne Christine Steenkj?r Hastrup, Caitlin Howell, Flemming Hofmann Larsen, et al. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi[J]. Fungal Biology,2012,6:1052-1063.
 [35] Cohen R, Suzuki M R, Hammel K E. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum[J].Applied and environmental microbiology,2005,71(5):2412-2417.
 [36] Cohen R, Suzuki M, Hammel K E. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum[J].Applied Environment Microbiology,2005, 71:2412–2417.
 [37] Yoon J J, Cha C J, Kim Y S, et al. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose[J].Journal of Microbiology and Biotechnology,2007,17:800-805.
 
 |