欢迎访问《中国农学通报》,

中国农学通报 ›› 2018, Vol. 34 ›› Issue (21): 54-61.doi: 10.11924/j.issn.1000-6850.casb17070064

所属专题: 园艺

• 林学 园艺 园林 • 上一篇    下一篇

功能结构模型在黄瓜栽培密度最优化设计中的应用

钱婷婷,赵京音   

  1. 上海市农业科学院,上海市农业科学院
  • 收稿日期:2017-07-13 修回日期:2018-07-13 接受日期:2017-08-24 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 赵京音
  • 基金资助:
    上海市科技兴农重点公关项目“基于图像分析及三维建模技术的黄瓜长势快速评价方法研究”(沪农科攻字(2015)第6-4-2 号);沪农青字 (2016)第1-26 号“基于功能结构模型的黄瓜株型评价方法研究”。

Application of Functional-structural Plant Modeling in Planting Density Optimized Design of Cucumber

  • Received:2017-07-13 Revised:2018-07-13 Accepted:2017-08-24 Online:2018-07-26 Published:2018-07-26

摘要: 本研究选择秋冬季日光温室黄瓜为研究对象,利用参数化方法构建了不同株距和行距处理的虚拟冠层结构模型,并在与光分布模型和光合模型相结合的基础上,模拟分析了株行距改变对冠层叶片分布、光截获以及光合速率的影响。模拟结果显示,株行距的增加,促进了冠层对光的透性,对方位角朝向北部和行内的叶片的光截获有明显促进作用,也使得叶片在北部和行内的分布频率显著增加。从单株平均光截获来看,改变株距和行距分别使单株光截获量提高了34.78%和23.18%。通过将光截获模拟结果与光合模型相结合,得到了冬季栽培的最优株行距,即45.70 cm(株距)及43.22cm(行距)。与传统的40×40 cm株行距栽培方式相比,最优株行距略有增加。本研究结果为功能结构模型在实际生产中的应用以及作物栽培株行距最优化设计提供定量化的决策依据。

Abstract: The aim is to analyze the light distribution and photosynthesis characters of cucumber canopies by using functional-structural plant models and to provide a theoretical basis for optimizing the planting density of cucumber in winter. Virtual cucumber canopies structure model under the treatment with different plant spacing and row spacing in autumn and winter was constructed by using parametrization method. Combining with light distribution model and photosynthesis model, the influence of plant and row spacing change on leaves distribution of canopy, light interception and photosynthetic rate was simulated and analyzed. The results showed that as plant and row spacing increased, light condition in the canopy was improved, meanwhile, light interception of leaves of azimuths towards north direction and inside of rows was promoted. The distribution frequency of leaves in the north and inside the row increased obviously. From the light interception per plant, the change of plant and row spacing increased the light interception by 34.78% and 23.18% , respectively. The simulation result of light interception was combined with photosynthesis model, and then the optimal plant and row spacing was obtained, which was 45.70 cm (plant spacing) and 43.22 cm (row spacing), respectively.