欢迎访问《中国农学通报》,

中国农学通报 ›› 2018, Vol. 34 ›› Issue (29): 104-111.doi: 10.11924/j.issn.1000-6850.casb17080108

所属专题: 畜牧兽医 园艺

• 畜牧 动物医学 蚕 蜂 • 上一篇    下一篇

茶皂素对奶牛瘤胃甲烷菌及甲烷排放的影响

汪 悦,张议夫,蒋林树   

  1. 奶牛营养学北京市重点实验室,奶牛营养学北京市重点实验室,奶牛营养学北京市重点实验室;
  • 收稿日期:2017-08-25 修回日期:2017-11-07 接受日期:2017-11-20 出版日期:2018-10-15 发布日期:2018-10-15
  • 通讯作者: 蒋林树
  • 基金资助:
    “十三五”国家重大科技专项(2016YFDO700201);北京市农业局北京市现代农业产业技术体系奶牛创新团队。

Effects of Tea Saponin on Rumen Methanogens and Methane Emission in Dairy Cows

  • Received:2017-08-25 Revised:2017-11-07 Accepted:2017-11-20 Online:2018-10-15 Published:2018-10-15

摘要: (目的)本试验旨在通过体外发酵模型与体内试验相结合研究不同添加剂量的茶皂素(tea saponin,TS)对奶牛瘤胃甲烷菌及甲烷排放的影响。(方法)体外发酵模型以0.5g常规全混合饲粮(TMR)为底物,添加TS的浓度梯度为0(对照)、5、10和15 g/L。体内试验采用4×4拉丁方设计,选取4头装有永久性瘤胃瘘管的健康荷斯坦奶牛,饲喂常规TMR饲粮,添加TS的浓度梯度为0(对照)、15、30和45 g/d.头,自由饮水,试验共进行4期,其中包括预饲期7d,试验期14d。通过采集瘤胃液并提取其中基因组DNA,进而计算甲烷菌及其他菌种的基因拷贝数,以此确定瘤胃中甲烷菌的总数与结构。(结果)结果表明,1)添加TS对体外发酵模型中甲烷菌总数没有显著影响(P>0.05),但能够明显改变甲烷菌结构,即甲酸甲烷杆菌(M.formicium)与史氏甲烷菌(M. smithii)数量减少(P<0.05),甲烷热杆菌(M. stadtmanae)数量增加(P<0.05),反刍甲烷杆菌(M.ruminantium)没有显著变化(P>0.05)。2)体外发酵模型中,与对照组相比,TS的添加量为10和15 g/L时,能够显著降低产气量(P<0.05)和发酵速率(P<0.01),减少原虫数量(P<0.01),进而抑制甲烷排放(P<0.01)。但在体内试验中,以上各项结果均不存在显著差异(P>0.05)。(结论)体外试验证明,饲粮中添加TS虽然没有改变甲烷菌总菌数量,但能够在一定程度上改变甲烷菌菌群结构,减少原虫数量,降低产气量,进而实现奶牛甲烷气体的减排。但体内试验中,TS的添加对奶牛瘤胃内甲烷菌没有显著影响。

Abstract: We aim to investigate the effect of tea saponin (TS) on the rumen methanogens and methane emission in dairy cows by in vitro fermentation and in vivo experiments. For the in vitro fermentation model, the 0.5 g total mixed ration (TMR) was used as the substrate, the concentration gradient of added TS was 0 (control), 5, 10 and 15 g/L. For the in vivo experiment, 4 healthy Holstein dairy cows with permanent rumen fistula were fed with TMR containing 0 (control), 15, 30 and 45 g/d TS, respectively. The experiment lasted for 4 periods (each period lasted for 20 days, including 7 days of pre-feeding and 14 days of test). The total number and population structure of methanogens in rumen were determined by collecting the rumen fluid and extracting the genomic DNA, and then calculating the gene copy number of methanogens and other strains. The results showed that the addition of TS had no significant effect on the total number of methanogens in the in vitro fermentation model (P>0.05), but it could significantly change the population structure of methanogens. The numbers of M. formicium and M. smithii significantly decreased (P<0.05), the number of M. stadtmanae significantly increased (P<0.05), and the number of M. ruminantium did not change significantly (P>0.05). In the in vitro fermentation model, compared with the control group, the high addition of TS (10 and 15 g/L) could significantly reduce the gas production (P<0.05) and the fermentation rate (P<0.01), decrease the number of protozoa (P<0.01), and inhibit methane emission (P<0.01). However, in the in vivo experiment, the above results were not significantly different (P>0.05). In conclusion, the in vitro experiment shows that the addition of TS in the diet cannot change the total number of methanogens, but can change the population structure of methanogens to a certain extent, reduce the number of protozoa, decrease the gas production, achieving the methane emission reduction. Whereas the in vivo experiment indicates that the addition of TS has no significant effect on rumen methanogens in dairy cows.