[1] Briat, J. F., Dubos, C. Gaymard, F. Iron nutrition, biomass production, and plant product quality[J]. Trends in Plant Science , 2015, 20, 33-40. [2] Thomine, S. Vert, G. Iron transport in plants: better be safe than sorry. Current Opinion in Plant Biology[J]. 2013.16, 322-327 [3] Mengel, K., Kirkby, E. A., Kosegarten, H. Appel, T. Principles of Plant Nutrition. International Potash Institute[M], 1982. [4] Chen, Y. Barak, P. Iron Nutrition of Plants in Calcareous Soils. Advances in Agronomy[J]. 1982. 35, 217-240. [5] Murata, Y., Itoh, Y., Iwashita, T. Namba, K. Transgenic Petunia with the Iron(III)-Phytosiderophore Transporter Gene Acquires Tolerance to Iron Deficiency in Alkaline Environments[J]. Plos One. 2015.10(3), e0120227. [6] Zuo, Y., Ren, L., Zhang, F. Jiang, R. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil[J]. Plant Physiology Biochemistry. 2007. 45, 357. [7] 任丽轩. 石灰性土壤上HCO3^-诱导花生缺铁失绿机制[J]. 生态学报. 2005. 25, 795-801. [8] Haleem, A. A., Loeppert, R. H. Anderson, W. B. Role of soil carbonate and iron oxide in iron nutrition of soybean in calcareous soils of Egypt and the United States[J]. 1995. 59, 307-314. [9] De, B. B., Mclean, E., Andersson, M. Rogers, L. Iodine deficiency in 2007: global progress since 2003[J]. Food Nutrition Bulletin.2008. 29, 195. [10] Yuan, D. X. WORLD CORRELATION OF KARST ECOSYSTEM: OBJECTIVES AND IMPLEMENTATION PLAN[J]. Advance in Earth Sciences. 2001. 16, 461-466. [11] Carpena-Artes, O., Moreno, J. J., Lucena, J. J. Carpena-Ruiz, R. O. Response to iron chlorosis of different hydroponically grown Citrus varieties[J]. Springer Netherlands. 1995. 147-151. [12] Lucena, J. J. Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorisis[J]. A review. Journal of Plant Nutrition. 2000. 23, 1591-1606. [13] 张福锁. 重碳酸盐抑制向日葵吸收利用铁的机理[J]. 土壤. 1992.293-296. [14] Zheng, Y. C. Wang, S. J. Seological cause of calcareous soil erosion and land rocky desertification in karst area, Guizhou province [J]. Resources Enuironment in the Yangtza Basin. 2002. 11, 461-465. [15] Hopkins, B. Ellsworth, J. [16] Ao, T. Y., Chaney, R. L., Korcak, R. F., Fan, F. Faust, M. Influence of soil moisture level on apple iron chlorosis development in a calcareous soil[J]. Plant Soil . 1987. 104, 85-92. [17] Zheng, Y. Effects of Soil Moisture and Bicarbonate on Iron Chlorosis of Peanut Grown on Calcareous Soil[J]. Review of China Agricultural Science Technology 2000.03.234-237 [18] Elgala, A. M. Maier, R. H. Chemical forms of plant and soil iron as influenced by soil moisture[J]. Plant Soil. 1964. 21, 201-212. [19] Colombo, C., Palumbo, G., He, J. Z., Pinton, R. Cesco, S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes[J]. Journal of Soils Sediments. 2014. 14, 538-548. [20] Krohling, C. A. et al. Ecophysiology of iron homeostasis in plants[J]. Soil Science Plant Nutrition. 2016. 62, 39-47 [21] Mengel, K. Iron availability in plant tissues-iron chlorosis on calcareous soils[J]. Plant Soil. 1994. 165, 275-283. [22] Guerinot, M. L. Yi, Y. Iron: Nutritious, Noxious, and Not Readily Available[J]. Plant Physiology. 1994. 104, 815-820. [23] Lindsay, Willard, L., Thorne D., W. Bicarbonate ion and oxygen level as related to chlorosis[J]. Soil Science. 1954. 77, 271-280. [24] Boxma, R. Bicarbonate as the most important soil factor in lime-induced chlorosis in the netherlands[J]. Plant Soil. 1972. 37, 233-243. [25] Mengel, K., Breininger, M. T. Bübl, W. Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil[J]. Plant Soil. 1984. 81, 333-344. [26] Boukhalfa, H. Crumbliss, A. L. Chemical aspects of siderophore mediated iron transport[J]. Biometals. 2002. 15, 325-339. [27] Romheld, V. Marschner, H. Mobilization of iron in the rhizosphere of different plant species[J]. Advances in Plant Nutrition. 1986. 3, 178-182 [28] Liu, Y. et al. Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant[J]. Plant Soil. 2013. 372, 125-136 [29] Lee, J. A. Woolhouse, H. W. A comparative study of bicarbonate inhibition of root growth of certain grasses[J]. New Phytologist. 1969. 68, 1-11. [30] Gruber, B. Kosegarten, H. Depressed growth of non‐chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis[J]. Journal of Plant Nutrition and Soil Science = Zeitschrift fuer Pflanzenernaehrung und Bodenkunde. 2015. 165, 111-117. [31] Gruber, B. Kosegarten, H. Inhibited leaf growth of plants grown in alkaline solution and on calcareous soils is a more sensitive Fe-deficiency symptom than leaf chlorosis[J]. 2001. [32] Yang, X., R?mheld, V. Marschner, H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.) [J]. Plant Soil 1994.164, 1-7. [33] Li, Q., Yang, A. Zhang, W. H. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativaL.) [J]. Journal of Experimental Botany. 2016. 67, 6431-6444. [34] Covarrubias, J. I. Rombolà, A. D. Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate[J]. Plant Soil. 2013. 370, 305-315. [35] Uren, N. C. Reisenauer, H. M. The role of root exudates in nutrient acquisition[J]. Advances in Plant Nutrition .1988. 3,203-207. [36] Jones, D. L. Darrah, P. R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere[J]. Plant Soil. 1994. 166, 247-257. [37] M'Sehli, W. et al. Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency[J]. Plant Soil. 2008.312, 151-162. [38] Zhao, K. Wu, Y. Effect of Zn deficiency and excessive bicarbonate on the allocation and exudation of organic acids in two Moraceae plants[J]. Acta Geochimica. 2017. 1-9. [39] Rodríguez-Celma, J. et al. Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on Medicago truncatula[J]. Plant Cell Physiology. 2011. 52, 2173-2189. [40] Rose, M. T., Rose, T. J., Pariascatanaka, J., Widodo Wissuwa, M. Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes[M]. 2011. [41] Tato, L., De, N. P., Donnini, S. Zocchi, G. Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.) [J]. Plant Physiology Biochemistry Ppb. 2013. 72, 145. [42] Yang, C., Guo, W. Shi, D. Physiological Roles of Organic Acids in Alkali-Tolerance of the Alkali-Tolerant Halophyte Chloris virgate[J]. Agronomy Journal. 2010.102. [43] Guo, S. H., Niu, Y. J., Zhai, H., Han, N. Du, Y. P. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks[J]. Scientia Horticulturae. 2018. 227, 255-260 . [44] Yang, G. H. Alkali stress induced the accumulation and secretion of organic acids in wheat[J]. African Journal of Agricultural Research. 2012. 18,7. [45] Donnini, S., Castagna, A., Ranieri, A. Zocchi, G. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate[J]. Journal of Plant Physiology. 2009. 166, 1181-1193. [46] Qian, Z., Zhang, Q., Zhang, X., Han, Z. Wang, Y. Cloning and characterization of MxHA7 , a plasma membrane H + -ATPase gene related to high tolerance of Malus xiaojinensis to iron deficiency[J]. Acta Physiologiae Plantarum. 2014. 36, 955-962. [47] Lucena, C. et al. Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants[J]. Functional Plant Biology. 2007. 34, 1002-1009. [48] Martínezcuenca, M. R., Legaz, F., Fornerginer, M. á., Primomillo, E. Iglesias, D. J. Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots[J]. Journal of Plant Physiology. 2013. 170, 899-905. [49] Martínez-Cuenca, M. R., Iglesias, D. J., Forner-Giner, M. A., Primo-Millo, E. Legaz, F. The effect of sodium bicarbonate on plant performance and iron acquisition system of FA-5 (Forner-Alcaide 5) citrus seedlings[J]. Acta Physiologiae Plantarum. 2013.35, 2833-2845. [50] Rayadíaz, S., Sánchezrodríguez, A. R., Segurafernández, J. M., Del, M. C. Quesadamoraga, E. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates[J]. Plos One. 2017. 12, e0185903. [51] Brown, J. C. Tiffin, L. O. Obligatory Reduction of Ferric Chelates in Iron Uptake by Soybeans[J]. Plant Physiology. 1972. 50, 208 [52] Robinson, N. J., Procter, C. M., Connolly, E. L. Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils[J]. Nature. 1999 397, 694-697. [53] Li, L., Cheng, X. Ling, H. Q. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology. 2004.5 4, 125-136 [54] Waters, B. M., Blevins, D. G. Eide, D. J. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition[J]. Plant Physiology. 2002. 129, 85. [55] Waters, B. M. et al. Ethylene involvement in the regulation of the H + -ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants[J]. Plant Physiology Biochemistry 2007.45, 293-301. [56] Garc铆A, M. J. et al. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum. 2014. 150, 95. [57] En-Jung, H. Waters, B. M. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis[J]. Journal of Experimental Botany. 2016. 67, 5671-5685. [58] 崔骁勇, 曹一平 张福锁. 氮素形态及HCO-3对豌豆铁素营养的影响[J]. 植物营养与肥料学报. 2000. 6, 84-90. [59] R?mheld, V. Marschner, H. Mechanism of Iron Uptake by Peanut Plants 1[J]. Plant Physiology. 1983. [60] Eide, D., Broderius, M., Fett, J. Guerinot, M. L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America. 1996. 93, 5624-5628. [61] Eckhardt, U., Mas, M. A. Buckhout, T. J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Molecular Biology. 2001. 45, 437-448. [62] Cohen, C. K., Fox, T. C., Garvin, D. F. Kochian, L. V. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants[J]. Plant Physiology. 1998. 116, 1063. [63] Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H. Mori, S. Cloning an iron‐regulated metal transporter from rice[J]. Journal of Experimental Botany. 2002. 53, 1677. [64] G, V. et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell. 2002. 14, 1223-1233. [65] Wang, H. Y. et al. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana[J]. Planta . 2007. 226, 897. [66] Yuan, Y. et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell research. 2008. 18, 385. [67] Vannozzi, A. et al. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions[J]. Frontiers in Plant Science. 2016.7, 1994. [68] Hell, R. Stephan, U. W. Iron uptake, trafficking and homeostasis in plants[J]. Planta. 2003. 216, 541-551. [69] Durrett, T. P., Gassmann, W. Rogers, E. E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant Physiology. 2007. 144, 197-205. [70] Yokosho, K. Ma, J. F. OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice[J]. Plant Physiology. 2009. 149, 297-305. [71] Takanashi, K. et al. LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus[J]. Plant Cell Physiology. 2013. 54, 585-594. [72] Hannetz, R. et al. New insights into Fe localization in plant tissues[J]. Frontiers in Plant Science. 2013. 4, 350. [73] Kruger, C., Berkowitz, O., Stephan, U. W. Hell, R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L[J]. Journal of Biological Chemistry. 2002. 277, 25062-25069. [74] Waters, B. M. et al. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds[J]. Plant Physiology. 2006. 141, 1446. [75] Divol, F. et al. The Arabidopsis YELLOW STRIPE LIKE4 and 6 Transporters Control Iron Release from the Chloroplast[J]. Plant Cell. 2013. 25, 1040. [76] Petit, J. M., Briat, J. F. Lobréaux, S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical Journal. 2001. 359, 575.
|