| [1] | 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019,50(S1):313-317. | 
																													
																						| [2] | Hang J, Zhang D, Chen P, et al. Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network[J]. Sensors, 2019,19(19):4161. | 
																													
																						| [3] | Sladojevic S, Arsenovic M, Anderla A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience, 2016. | 
																													
																						| [4] | 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017,33(19):209-215. | 
																													
																						| [5] | 刘永波, 雷波, 曹艳, 等. 基于深度卷积神经网络的玉米病害识别[J]. 中国农学通报, 2018,34(36):159-164. | 
																													
																						| [6] | Dechant C, Wiesnerhanks T, Chen S, et al. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning[J]. Phytopathology, 2017,107(11):1426-1432. | 
																													
																						| [7] | 孙云云, 江朝晖, 董伟, 等. 基于卷积神经网络和小样本的茶树病害图像识别[J]. 江苏农业学报, 2019,35(1):48-55. | 
																													
																						| [8] | 郑一力, 张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法[J]. 农业机械学报, 2018,49(S1):354-359. | 
																													
																						| [9] | 陈娟, 陈良勇, 王生生, 等. 基于改进残差网络的园林害虫图像识别[J]. 农业机械学报, 2019,50(5):187-195. | 
																													
																						| [10] | 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020,51(2):230-236,253. | 
																													
																						| [11] | 杨林楠, 郜鲁涛, 林尔升, 等. 基于Android系统手机的甜玉米病虫害智能诊断系统[J]. 农业工程学报, 2012,28(18):163-168. | 
																													
																						| [12] | 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019,35(17):194-204. | 
																													
																						| [13] | Zhang P, Yang L, Li D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment[J]. Computers and Electronics in Agriculture, 2020,176:105652. | 
																													
																						| [14] | Waheed A, Goyal M, Gupta D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf[J]. Computers and Electronics in Agriculture, 2020,175:105456. | 
																													
																						| [15] | Krizhevsky A, Sutskever I, Hinton G E, et al. Image Net Classification with Deep Convolutional Neural Networks[A]. Advances in Neural Information Processing Systems [C]. 2012:1097-1105. | 
																													
																						| [16] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. 2016:770-778. | 
																													
																						| [17] | 石祥滨, 房雪键, 张德园, 等. 基于深度学习混合模型迁移学习的图像分类[J]. 系统仿真学报, 2016,28(1):167-173,182. | 
																													
																						| [18] | 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020,36(7):184-191. | 
																													
																						| [19] | 杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报:自然科学版, 2018,46(7):122-127. | 
																													
																						| [20] | 崔义新. 基于交叉熵的随机赋权网络[D]. 保定:河北大学, 2017. | 
																													
																						| [21] | 王沛. 基于Flask框架的创新创业平台系统的设计与实现[D]. 济南:山东大学, 2018. | 
																													
																						| [22] | 都飞翔, 杨静, 史健芳. 基于Flask与树莓派的智能交通控制平台[J]. 现代电子技术, 2018,41(13):88-91. | 
																													
																						| [23] | Si Z, Shen K. Research on the WebP image format[A]. //Advanced Graphic Communications, Packaging Technology and Materials[M]. Springer, Singapore, 2016:271-277. | 
																													
																						| [24] | Chauhan J, Kaafar M A, Mahanti A. The Web for Underpowered Mobile Devices: Lessons Learned from Google Glass[J]. IEEE Internet Computing, 2018,22(3):38-47. | 
																													
																						| [25] | 刘波, 郭申. 基于卷积定理的人脸验证CNN模型加速[J]. 北京工业大学学报, 2017,43(11):1673-1680. |