[1] |
王凯, 范志新, 田昊伦, 等. 非洲猪瘟的流行概况及防控策略[J]. 中国兽医学报, 2019, 39(5):1027-1034.
|
[2] |
MA M, WANG H H, HUA Y, et al. African swine fever in China: Impacts, responses, and policy implications[J]. Food policy, 2021(3):102065.
|
[3] |
罗玉子, 孙元, 王涛, 等. 非洲猪瘟——我国养猪业的重大威胁[J]. 中国农业科学, 2018, 51(21):4177-4187.
doi: 10.3864/j.issn.0578-1752.2018.21.016
|
[4] |
WU K, LIU J, WANG L, et al. Current State of Global African swine fever vaccine development under the prevalence and transmission of ASF in China[J]. Vaccines, 2020, 8(3).
|
[5] |
马兴树, 宋金祥. 非洲猪瘟病毒免疫及基因工程疫苗研究进展[J]. 中国畜牧兽医, 2019, 46(11):3404-3413.
|
[6] |
包静月, 王志亮. 非洲猪瘟流行病学研究进展[J]. 中国动物检疫, 2013, 30(6):72-76.
|
[7] |
扈荣良, 于婉琪, 陈腾. 非洲猪瘟及防控技术研究现状[J]. 中国兽医学报, 2019, 39(2):357-369.
|
[8] |
CHEN J. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China[J]. Viruses, 2021,13.
|
[9] |
OIE Terrestrial Manual 2012: Chapter 2.8.1, African Swine Fever[EB/OL]. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.08.01_ASF.pdf.2018-09-22.
|
[10] |
ZSAK L, BORCA MV, RISATTI GR, ZSAK A, et al. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. Journal of clinical microbiology, 2005, 43(1):112-9.
pmid: 15634958
|
[11] |
WANG Y, XU L, NOLL L, STOY C, et al. Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control[J]. Transboundary and emerging diseases, 2020, 67(6):2446-2454.
doi: 10.1111/tbed.v67.6
URL
|
[12] |
OURA C A L, EDWARDS L, BATTEN C A. Virological diagnosis of African swine fever—Comparative study of available tests[J]. Virus research, 2013.
|
[13] |
WU X L, XIAO L, SONG Y, et al. A novel high-sensitivity droplet digital PCR (ddPCR) for detection of African swine fever virus[J]. Microbiology China, 2017.
|
[14] |
LI Z, JI W, LI G X, et al. A highly sensitive 1-tube nested real-time RT-PCR assay using LNA-modified primers for detection of respiratory syncytial virus - ScienceDirect[J]. Diagnostic microbiology and infectious disease, 2019, 93(2):101-106.
doi: S0732-8893(18)30333-X
pmid: 30266400
|
[15] |
FENG Z S, ZHAO L, WANG J, et al. A multiplex one-tube nested real-time RT-PCR assay for simultaneous detection of respiratory syncytial virus, human rhinovirus and human metapneumovirus[J]. Virology journal, 2018, 15(1).
|
[16] |
WANG J, CAI K, ZHANG R, et al. Novel one-step single-tube nested quantitative real-time PCR Assay for highly sensitive detection of SARS-CoV-2[J]. Analytical Chemistry, 2020, 92(13):9399-9404.
doi: 10.1021/acs.analchem.0c01884
pmid: 32438806
|
[17] |
LUCA M, DARIO D B, MICHELA V, et al. Allele Specific locked nucleic acid quantitative PCR (ASLNAqPCR): An accurate and cost-effective Assay to diagnose and quantify KRAS and BRAF mutation[J]. Plos one, 2012, 7(4):e36084.
doi: 10.1371/journal.pone.0036084
URL
|
[18] |
BALLANTYNE K N, OORSCHOT R, MITCHELL R J. Locked nucleic acids in PCR primers increase sensitivity and performance[J]. Genomics, 2008, 91(3):301-305.
doi: 10.1016/j.ygeno.2007.10.016
pmid: 18164179
|
[19] |
SHEN C H. Amplification of nucleic acids[J]. Diagnostic molecular biology, 2019:215-247.
|
[20] |
ISHIGE T, ITOGA S, MATSUSHITA K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in Cancer[J]. Advances in clinical chemistry, 2018, 83:53-72.
doi: S0065-2423(17)30061-6
pmid: 29304903
|
[21] |
RQZAB C, ZHENG L C, GXL D, et al. A highly sensitive one-tube nested quantitative real-time PCR assay for specific detection of Bordetella pertussis using the LNA technique[J]. International journal of infectious diseases, 2020, 93:224-230.
doi: 10.1016/j.ijid.2020.01.053
URL
|
[22] |
PATEL P, LANDT O, KAISER M, et al. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses[J]. Virology journal, 2013,10.
|
[23] |
吴亚楠, 朱潇静, 周博伦, 等. 非洲猪瘟病毒TaqMan荧光定量PCR检测方法的建立[J]. 中国兽医学报, 2020, 40(5):888-891.
|
[24] |
李洪利, 曹金山, 王君玮, 等. 非洲猪瘟病毒实时荧光定量PCR检测方法的建立及应用[J]. 中国畜牧兽医, 2012, 39(6):37-40.
|
[25] |
WANG J, ZHAO L, SUN J H, et al. Development of an innovative one-step nested PCR strategy for virus detection using the LNA technique[J]. Science China life sciences, 2019, 62(3):3.
|
[26] |
JOHN J, MAURER. Rapid detection and limitations of molecular techniques[J]. Annual review of food science and technology, 2011, 2(1):259-279.
doi: 10.1146/food.2011.2.issue-1
URL
|
[27] |
LEI S W, CHEN S, ZHONG Q P. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. International journal of biological macromolecules, 2021, 184(4).
|
[28] |
CILLONI D, PETITI J, ROSSO V, et al. Digital PCR in myeloid malignancies: Ready to replace quantitative PCR?[J]. International journal of molecular sciences, 2019, 20(9).
|