[1] |
LIN C H, LIN T H, PAN T M. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods[J]. Food & function, 2017, 8(6):2102-2109.
|
[2] |
ENDO A. MONACOLIN K. a new hypocholesterolemic agent produced by a Monascus species[J]. The journal of antibiotics, 1979, 32(8):852-854.
doi: 10.7164/antibiotics.32.852
URL
|
[3] |
刘庆萍. 基于红曲霉多样性分析能降低胆固醇成分的类群[J]. 中国调味品, 2020, 45(7):31-32,38.
|
[4] |
周礼红, 李国琴, 王正祥, 等. 红曲霉原生质体的制备,再生及其遗传转化系统[J]. 遗传, 2005, 27(3):423-428.
|
[5] |
周礼红, 陈平, 赵永霞, 等. REMI介导红曲霉遗传转化条件的优化[J]. 湖北农业科学, 2012, 51(18):4129-4133.
|
[6] |
LIANG B, DU X, LI P, et al. orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1[J]. Applied microbiology and biotechnology, 2017, 101:7281-7292.
doi: 10.1007/s00253-017-8462-7
URL
|
[7] |
林琳, 王昌禄, 李贞景, 等. mok E基因过表达对红曲霉Monacolin K产量、菌丝及孢子形态的影响[J]. 食品科学, 2018, 39(8):45-49.
doi: 10.7506/spkx1002-6630-201808008
|
[8] |
ZHANG C, LIANG J, YANG L, et al. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus[J]. Amb express, 2017, 7(1):22.
doi: 10.1186/s13568-016-0311-z
URL
|
[9] |
沈小瑞, 王钰, 陈达伟. 红曲霉LovD基因的克隆及转基因高产洛伐他汀菌株筛选[J]. 生物学杂志, 2019, 36(4):23-25.
|
[10] |
CHEN Y P, TSENG C P, LIAW L L, et al. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus[J]. Journal of agricultural and food chemistry, 2008, 56(14):5639-5646.
doi: 10.1021/jf800595k
URL
|
[11] |
CHEN Y P, YUAN G F, HSIEH S Y, et al. Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus[J]. Journal of agricultural and food chemistry, 2013, 58(1):287-93.
doi: 10.1021/jf903139x
URL
|
[12] |
ZHANG C, ZHANG H, ZHU Q, et al. Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus[J]. Applied microbiology and biotechnology, 2020, 104:3049-3060.
doi: 10.1007/s00253-020-10379-4
|
[13] |
LI Y P, XU Y, HUANG Z B. Isolation and characterization of the citrinin biosynthetic gene cluster from Monascus aurantiacus[J]. Biotechnology letters. 2012, 34(1):131-136.
doi: 10.1007/s10529-011-0745-y
URL
|
[14] |
HE Y, COX R J. The molecular steps of citrinin biosynthesis in fungi[J]. Chemical science, 2016, 7(3):2119-2127.
doi: 10.1039/c5sc04027b
pmid: 29899939
|
[15] |
邵彦春, 王汝毅, 丁月娣, 等. 农杆菌介导的红曲菌T-DNA插入突变库的构建及色素突变子的性质分析[J]. 菌物学报, 2006, 25(2):247-255.
|
[16] |
王鹏, 许春艳, 续丹丹, 赵燕, 等. 高产洛伐他汀红曲菌的选育及其在红腐乳中的应用[J]. 中国酿造, 2020, 39(11):52-57.
|
[17] |
邹乐花, 李燕萍, 黄志兵, 等. 橙色红曲菌As3.4384 orf7基因缺失株的构建及其功能分析[J]. 中国生物工程杂志, 2011, 31(7):79-84.
|
[18] |
SÁNCHEZ O, NAVARRO R E, AGUIRRE J. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI)[J]. Molecular & general genetics mgg, 1998, 258(1-2):89-94.
|
[19] |
MING R Y, CHEN J S, MARQUEZ J L, et al. Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters[J]. Methods in molecular biology, 2010, 637:47-64.
doi: 10.1007/978-1-60761-700-6_3
pmid: 20419429
|
[20] |
CHEN D E, PODELL S, SAUER J D, et al. The phagosomal nutrient transporter (Pht) family[J]. Microbiology, 2008, 154(1):42-53.
doi: 10.1099/mic.0.2007/010611-0
URL
|
[21] |
CHEN W P, FENG Y L, MOLNÁR I, et al. Nature and nurture: Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J]. Natural product reports, 2019, 36(4):561-572.
doi: 10.1039/C8NP00060C
URL
|
[22] |
袁天慧, 陈景智, 郭天龙, 等. 红曲色素液态发酵生产工艺研究[J]. 福州大学学报(自然科学版), 2020, 48(5):667-672.
|
[23] |
倪斌, 张辉, 邱华振. 不同条件对红曲色素及色价的稳定性分析[J]. 酿酒科技, 2021(4):65-70.
|
[24] |
王芳慧, 张静, 王昌禄, 等. 基于响应面的红曲色素液态发酵培养基优化[J]. 中国调味品, 2021, 46(12):1-5,26.
|
[25] |
苏东晓, 张瑞芬, 张名位, 等. 红曲色素生物活性研究进展[J]. 河南工业大学学报(自然科学版), 2017, 38(2):129-136.
|