[1] |
GUO S, ZHAO S, SUN H, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nature genetics, 2019, 51(11):1616-1623.
doi: 10.1038/s41588-019-0518-4
pmid: 31676863
|
[2] |
ZHU G, WANG S, HUANG Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1-2):249-261.
doi: S0092-8674(17)31499-X
pmid: 29328914
|
[3] |
MARKS R A, HOTALING S, FRANDSEN P B, et al. Representation and participation across 20 years of plant genome sequencing[J]. Nature plants, 2021, 7(12):1571-1578.
doi: 10.1038/s41477-021-01031-8
pmid: 34845350
|
[4] |
SUN Y, SHANG L, ZHU Q, et al. Twenty years of plant genome sequencing: achievements and challenges[J]. Trends in plant science, 2021. Doi: 10.1016/j.tplants.2021.10.006
doi: 10.1016/j.tplants.2021.10.006
|
[5] |
CHAUDHARY J, KHATRI P, SINGLA P, et al. Advances in omics approaches for abiotic stress tolerance in tomato[J]. Biology, 2019, 8(4):1-19.
doi: 10.3390/biology8010001
URL
|
[6] |
FENG S, ZHANG J, MU Z, et al. Recent progress on the molecular breeding of Cucumis sativus L. in China[J]. Theoretical and applied genetics, 2020, 133(5):1777-1790.
doi: 10.1007/s00122-019-03484-0
|
[7] |
WANG Y, BO K, GU X, et al. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature[J]. Horticulture research, 2020, 7(1):1-20.
doi: 10.1038/s41438-019-0222-7
|
[8] |
YE J, WANG X, WANG W, et al. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato[J]. Plant physiology, 2021, 186(4):2078-2092.
doi: 10.1093/plphys/kiab230
pmid: 34618111
|
[9] |
KIM M, NGUYEN T T P, AHN J, et al. Genome-wide association study identifies QTL for eight fruit traits in cultivated tomato (Solanum lycopersicum L.)[J]. Horticulture research, 2021, 8(1):1-10.
doi: 10.1038/s41438-020-00428-4
|
[10] |
SONG W N, KO L, HENRY R J. Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction[J]. Theoretical and applied genetics, 1994, 89(4):509-513.
doi: 10.1007/BF00225388
pmid: 24177902
|
[11] |
XIN Z, CHEN J. A high throughput DNA extraction method with high yield and quality[J]. Plant methods, 2012, 8(1):26.
doi: 10.1186/1746-4811-8-26
pmid: 22839646
|
[12] |
THOMSON D, HENRY R. Single-step protocol for preparation of plant tissue for analysis by PCR[J]. Biotechniques, 1995, 19(3):394-397.
pmid: 7495552
|
[13] |
孙稚成, 孙兆法, 段玉军, 等. 碱解法快速提取菠菜基因组DNA方法的优化[J]. 中国农学通报, 2020, 36(36):79-83.
doi: 10.11924/j.issn.1000-6850.casb20191200958
|
[14] |
姚丹, 闫伟, 关淑艳, 等. 高盐低pH值法提取大豆不同组织DNA的效果[J]. 河南农业科学, 2009(12):50-54.
doi: 10.3969/j.issn.1004-3268.2009.12.015
|
[15] |
SAHU S K, THANGARAJ M, KATHIRESAN K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol[J]. ISRN molecular biology, 2012, 2012:1-6.
|
[16] |
迟婧, 耿丽丽, 高继国, 等. 植物叶片基因组DNA快速提取方法[J]. 生物技术通报, 2014(9):51-57.
|
[17] |
SEMAGN K, BABU R, HEARNE S, et al. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement[J]. Molecular breeding, 2014, 33(1):1-14.
doi: 10.1007/s11032-013-9917-x
URL
|
[18] |
LU J, HOU J, OUYANG Y, et al. A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops[J]. Molecular breeding, 2020, 40(1):1-10.
doi: 10.1007/s11032-019-1080-6
|
[19] |
LIU S, WANG X, ZHANG Y, et al. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL[J]. Theoretical and applied genetics, 2021. Doi: 10.1007/s00122-021-03970-4
doi: 10.1007/s00122-021-03970-4
|
[20] |
吴建辉. 基于BSR_Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位[D]. 杨凌: 西北农林科技大学, 2017.
|
[21] |
刘宝平, 王均帅, 焦珍珍, 等. 一套适用于番茄DNA指纹库构建的KASP引物组合及其应用.ZL201910916095.4. 2019-12-24.
|
[22] |
刘丹, 周彩娥, 王晓婷, 等. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2021, 48(3):553-564.
|
[23] |
SCARAFONI A M D. An approach to the critical assessment of the experimental conditions in practical molecular biology: isolation of plant DNA[J]. Biochemistry and molecular biology education, 2001, 29(1):21-23.
doi: 10.1111/bmb.2001.29.issue-1
URL
|
[24] |
STEWART C N, VIA L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications[J]. Biology techniques, 1993, 14(5):748-751.
|
[25] |
CSAIKL U M A R, BASTIAN H, BRETTSCHEIDER R, et al. Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies[J]. Plant molecular biology reporter, 1998, 16(1):69-86.
doi: 10.1023/A:1007428009556
URL
|
[26] |
黄萱, 高丽美, 张永彦, 等. 一种优化的植物总DNA提取方法[J]. 西北植物学报, 2004(6):1103-1106.
|
[27] |
王富强, 张建, 温常龙, 等. 基于KASP标记的葡萄品种鉴定[J]. 中国农业科学, 2021, 54(13):2830-2846.
doi: 10.3864/j.issn.0578-1752.2021.13.012
|
[28] |
LI P, SU T, WANG H, et al. Development of a core set of KASP markers for assaying genetic diversity in Brassica rapa subsp. chinensis Makino[J]. Plant breeding, 2019, 138(3):309-324.
doi: 10.1111/pbr.2019.138.issue-3
URL
|
[29] |
王富强, 樊秀彩, 张颖, 等. SNP分子标记在作物品种鉴定中的应用和展望[J]. 植物遗传资源学报, 2020, 21(5):1308-1320.
|
[30] |
李志远, 于海龙, 方智远, 等. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建[J]. 中国农业科学, 2018, 51(14):2771-2788.
doi: 10.3864/j.issn.0578-1752.2018.14.014
|