欢迎访问《中国农学通报》,

中国农学通报 ›› 2018, Vol. 34 ›› Issue (28): 26-30.doi: 10.11924/j.issn.1000-6850.casb17070134

• 林学 园艺 园林 • 上一篇    下一篇

不同倍性青檀的光合特性研究

王峰,刘志兵,燕丽萍,孙忠奎,程甜甜,杨波,张林   

  1. 泰安市泰山林业科学研究院,泰安市徂徕山林场,山东省林业科学研究院,泰安时代园林科技开发有限公司,泰安市泰山林业科学研究院,泰安市泰山林业科学研究院,泰安市泰山林业科学研究院
  • 收稿日期:2017-07-27 修回日期:2017-11-24 接受日期:2017-12-25 出版日期:2018-10-11 发布日期:2018-10-11
  • 通讯作者: 张林
  • 基金资助:
    山东省农业重大应用技术创新项目“青檀、椴树等珍稀优良树种高效繁育技术研究”;山东省农业良种工程项目“青檀种质创新利用与新品 种培育”(鲁科字[2014]96 号);国家林木种质资源库建设项目“泰安市乡土观赏树种国家林木种质资源库”(林场发[2016]153 号)。

Photosynthetic Characteristics of Different Ploidy Varieties of Pteroceltis tatarinowii

  • Received:2017-07-27 Revised:2017-11-24 Accepted:2017-12-25 Online:2018-10-11 Published:2018-10-11

摘要: 为了解不同倍性青檀光合生理特性的差异,提高林木质量,本研究采用光合测定系统对人工诱变培育的四倍体品种、变异二倍体小叶品种和普通二倍体品种的各项光合生理参数及其变化规律进行测定。结果表明:四倍体和二倍体青檀的叶片净光合速率日变化都呈单峰型曲线,但峰值出现的时间不同。三个青檀品种叶片的LSP为4倍体青檀(1691.67μmol/(m2.s))> 2倍体青檀(1657.14μmol/(m2.s))> 小叶青檀(1635.71μmol/(m2.s)),LCP为4倍体青檀(77.43μmol/(m2.s))> 4倍体青檀(61.53μmol/(m2.s))> 小叶青檀(36.41μmol/(m2.s)),表观光合量子效率分别为4倍体青檀(0.0132μmolphotons.m-2.s-1)> 2倍体青檀(0.0131μmolphotons.m-2.s-1)> 小叶青檀(0.0104μmolphotons.m-2.s-1)。三个青檀品种叶片的CSP为2倍体青檀(1371.43μmol/mol)> 小叶青檀(1350μmol/mol)> 4倍体青檀(1337.5μmol/mol),CCP为4倍体青檀(153.17μmol/mol)> 2倍体青檀(149.48μmol/mol)> 小叶青檀(129.01μmol/mol),羧化效率为2倍体青檀(0.0194)> 4倍体青檀(0.0180)> 小叶青檀(0.0165)。四倍体青檀单位叶面积叶绿素含量显著高于二倍体青檀(P<0.05)。

Abstract: To understand the difference of photosynthetic physiological characteristics and improve the quality of forest trees, the photosynthetic system was used to determine the photosynthetic physiological parameters and change law of artificial mutagenic cultivars, variant diploid leaflets and common diploid varieties. The results showed that the diurnal variation of net photosynthetic rate of tetraploid and diploid alpine leaves had a single peak curve, but the peak appeared at different times. The order of LSP from high to low was diploid species[1691.67μmol/(m2·s)]>variantspecies[1657.14μmol/(m2·s)]>tetraploidvarieties[1635.71μmol/(m2·s)], andtheorderofLCP fromhightolowwasvariantspecies[77.43μmol/(m2·s)]>diploidspecies[61.53μmol/(m2·s)]> tetraploid varieties [36.41 μmol/(m2 ·s)]. The order of apparent quantum yield of photosynthesis from high to low was: tetraploid species [0.0132 μmolphotons/(m2 · s)] > diploid species [0.0131 μmolphotons/(m2 · s)] > variant varieties[0.0104 μmolphotons/(m2·s)]. The order of CSP from high to low was diploid species (1371.43 μmol/mol)> variant varieties (1350 μmol/mol) > tetraploid species (1337.5 μmol/mol), and the order of CCP from high to low was variant species (153.17μmol/mol) > diploidspecies 149.48 μmol/mol) > tetrap loidvarieties (129.01μmol/mol), the order of carboxylation efficiency from high to low was diploid species(0.0194)> tetraploid species (0.0180)> variant varieties(0.0165). The leaf chlorophyll content of tetraploid species was significantly higher than that of diploid specie (P<0.05). The chlorophyll a, total chlorophyll content, carotenoid content, chlorophyll a/b, carotenoid /chlorophyll in the leaves of tetraploid species were significantly higher than those of the common diploid species and variant varieties. In conclusion, the assimilation and leaf light conversion efficiency of tetraploid species were higher than that of diploid species. The ability of tetraploid species to use weak light was better than that of diploid species, and more assimilates could be produced under weak light condition.