 
 中国农学通报 ›› 2020, Vol. 36 ›› Issue (31): 13-19.doi: 10.11924/j.issn.1000-6850.casb20191100879
所属专题: 生物技术
收稿日期:2019-11-26
									
				
											修回日期:2020-02-23
									
				
									
				
											出版日期:2020-11-05
									
				
											发布日期:2020-11-20
									
			通讯作者:
					赵辉
							作者简介:闫亮,男,1995年出生,黑龙江绥化人,在读硕士,研究方向:微生物资源挖掘与利用。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,E-mail:基金资助:Received:2019-11-26
									
				
											Revised:2020-02-23
									
				
									
				
											Online:2020-11-05
									
				
											Published:2020-11-20
									
			Contact:
					Zhao Hui  			     					     	
							摘要:
文章总结了同化性硫酸盐还原和异化性硫酸盐还原2种不同的代谢途径,归纳了腺苷酰硫酸还原酶和亚硫酸盐还原酶2种关键酶的酶学性质。指出硫酸盐还原菌可利用自身的代谢特性降低农业领域的土壤重金属污染,促进农作物生长;利用其具有降解乳酸盐的功能,使白酒增己降乳;还可用于微生物燃料电池以及多环芳烃的降解等其他领域。同时硫酸盐还原菌也具有腐蚀金属的弊端,分析表明可以筛选出对硫酸盐还原菌的自我修复机制抑制程度强的金属离子或者对其进行基因工程改造,从而减少对金属腐蚀的危害。
中图分类号:
闫亮, 赵辉. 硫酸盐还原菌酶学性质及应用的研究进展[J]. 中国农学通报, 2020, 36(31): 13-19.
Yan Liang, Zhao Hui. Advances in Enzyme Properties and Applications of Sulfate-reducing Bacteria[J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 13-19.
| [1] | 万云洋, 赵国屏. 原核微生物的硫功能菌[J]. 微生物学通报, 2017,44(6):1471-1480. | 
| [2] | 陈悟. 硫酸盐还原菌多相分类系统与综合防治方法研究[D]. 武汉:华中科技大学, 2006. | 
| [3] | Barton Larry L, Ritz Nathaniel L, Fauque Guy, et al. Sulfur Cycling and the Intestinal Microbiome[J]. Digestive diseases and sciences, 2017,62(9). URL pmid: 28689252 | 
| [4] | 蔡靖, 郑平, 张蕾. 硫酸盐还原菌及其代谢途径[J]. 科技通报, 2009,25(4):427-431. | 
| [5] | 郑春丽. 嗜酸氧化亚铁硫杆菌硫同化途径蛋白ATP硫酸化酶、APS还原酶、半胱氨酸合成酶的研究[D]. 长沙:中南大学, 2009. | 
| [6] | 丁绍兰, 曹凯, 李华, 等. 水解多级好氧耦合工艺处理制革废水的研究[J]. 中国皮革, 2017,46(8):56-65. | 
| [7] | 王璐怡. 普瑞杨抗硫代谢机制的研究[D]. 北京:中国林业科学研究院, 2018. | 
| [8] | 黄婷婷. 亚硫酸钠促进莱茵衣藻生长与光合制氢的功能机理研究[D]. 上海:上海师范大学, 2017. | 
| [9] | Zeng Danfei, Yin Qidong, Du Qing, et al. System performance and microbial community in ethanol-fed anaerobic reactors acclimated with different organic carbon to sulfate ratios[J]. Bioresource technology, 2019,278. doi: 10.1016/j.biortech.2019.01.094 URL pmid: 30708329 | 
| [10] | Xing Lizhen, Yang Shuo, Yin Qidong, et al. Effects of carbon source on methanogenic activities and pathways incorporating metagenomic analysis of microbial community[J]. Bioresource Technology, 2017,244. doi: 10.1016/j.biortech.2017.07.169 URL pmid: 28851158 | 
| [11] | Oyekola Oluwaseun O, van Hille Robert P. Study of anaerobic lactate metabolism under biosulfidogenic conditions[J]. Water Research, 2009,43(14) doi: 10.1016/j.watres.2009.05.014 URL pmid: 19527913 | 
| [12] | Dostal Webster Allison, Staley Christopher, Hamilton, et al. Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria[J]. Gut microbes, 2019,10(4). doi: 10.1080/19490976.2018.1552259 URL pmid: 30500312 | 
| [13] | Gunter Fritza, Thomas Buchert. Adenylylsulfate reductases from archaea and bacteria are 1:1KL-heterodimeric ironsulfur avoenzymes high similarity of molecular properties emphasizes their central role in sulfur metabolism[J]. FEBS Letters, 2000,473:62-67. | 
| [14] | Antje Prior, Joachi F, Uhrig, et al. Strucural and kinetic properties of adenylylsulfate reductase from Catharanthus roseus cell cultures[J]. Biochemica et Biophysica Acta, 1999,1430(1):25-38. | 
| [15] | Peck H D. Enzymatic basis for assimilatory and dissimilatory sulfate reduction[J]. Journal of Bacteriology, 1961,82. doi: 10.1128/JB.82.6.849-856.1961 URL pmid: 13885922 | 
| [16] | Fritz Günter, Büchert Thomas, Kroneck, et al. The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases: Evidence for flavin-catalyzed reduction of adenosine 5'-phosphosulfate[J]. Journal of Biological Chemistry, 2002,277(29). URL pmid: 12011095 | 
| [17] | 常磊峰. 硫酸盐还原分离菌APS还原酶和亚硫酸盐还原酶的纯化及性质研究[D]. 呼和浩特:内蒙古师范大学, 2008. | 
| [18] | 郑春丽, 张燕飞, 吴安娜, 等. 嗜酸氧化亚铁硫杆菌APS还原酶的表达、纯化及其性质鉴定[J]. 现代生物医学进展, 2009,9(5):812-814,841. | 
| [19] | Zimmermann P, Laska S, Kletzin A. Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens[J]. Archives of Microbiology, 1999,172(2):76-82. doi: 10.1007/s002030050743 URL pmid: 10415168 | 
| [20] | 葛玉凤. 重组复合脱硫酶的构建及高效表达[D]. 石河子:石河子大学, 2016. | 
| [21] | Yagi T, Ogata M. Catalytic properties of adenylylsulfate reductase from Desulfovibrio vulgaris Miyazaki[J]. Biochimie, 1996,78(10). doi: 10.1016/s0300-9084(97)84332-5 URL pmid: 9116049 | 
| [22] | 邱广亮. 微生物法脱除工业烟气二氧化硫的研究[D]. 天津:天津大学, 2006. | 
| [23] | Lee Jong-Sun, White Ethan, Kim Sang Gon, et al. Discovery of a novel adenosine 5′-phosphosulfate (APS) reductase from the methanarcheon Methanocaldococcus jannaschii[J]. Process Biochemistry, 2010,46(1). | 
| [24] | Larsen O, Lien T, Birkrland N K. A novel organization of the dissimilatory sulfite reductase operon of thermodesulforhabdus norvegica verified by RT-PCR[J]. FEMS Microbiology Letters, 2001,20:381-385. | 
| [25] | 李彬辉. 基于抗铬基因和亚硫酸盐还原酶特性的优势菌除铬机理研究[D]. 广州:广东工业大学, 2012. | 
| [26] | Moura I, Mall J. Characterization of Two Dissimilatory Sulfite Reductases (Desulforubidin and Desulfoviridin) from the Sulfate-Reducing Bacteria. Mossbauer and EPR Studies[J]. J Am Chem SOC, 1988,110:1075-1082. | 
| [27] | Nobuhiro Mizuno, Gerrit Voordouw, Kunio, et al. Crystal Structure of Dissimilatory Sulfite Reductase D (DsrD) Protein—Possible Interaction with B- and Z-DNA by Its Winged-Helix Motif[J]. Structure, 2003,11(9). doi: 10.1016/s0969-2126(03)00184-9 URL pmid: 12962621 | 
| [28] | Yin L J, Lin H Y, Jiang I. Purification and characterization of Escherichia coli sulfite reductase and its application in surimi processing[J]. Food chemistry and toxicology, 2002,67(9):3329-3334. | 
| [29] | Jiang S T, Ho M L, Jiang S H, et al. Purified NADPH-sulfite reductase from Saccharomyces cerevisiae effects on quality of ozonated mackerel surimi[J]. J Biol Chem, 1973,248:251-264. URL pmid: 4144254 | 
| [30] | Takahashi Shunji, Yip Wai-Cheung, Tamura Goro. Purification and Characterization of ferredoxin-sulfite reductase from turnip (Brassica rapa) leaves and comparison of properties with ferredoxin -sulfite reductase from turnip roots[J]. Biosci Biotech Biochem, 1997,61(9):1486-1490. | 
| [31] | Siegel L M, Murphy M J, Kamin H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. The Escherichia coli hemoflavoprotein: Molecular parameters and prosthetic groups[J]. Biol Chem, 1973,248:251-264. | 
| [32] | Jiang S T, Ho M L, Jiang S H, et al. Purified NADPH-sulfite reductase from Saccharomyces cerevisiae effects on quality of ozonated mackerel surimi[J]. Food Sci, 1998,63:777-781. | 
| [33] | 赵书梅, 王霖慧, 唐嘉琦, 等. 溶藻弧菌中酯酶基因的克隆表达及其酶学性质研究[J]. 生物技术通报, 2017,33(6):190-196. | 
| [34] | Arnaud Gruez, David Pignol. Four Crystal Structures of the 60 kDa Flavoprotein Monomer of the Sulfite Reductase Indicate a Disordered Flavodoxin-like Module[J]. J Mol Biol, 2000,299:199-212. URL pmid: 10860732 | 
| [35] | Ostrowski Jacek, Wu Jer-YerYuarn, Rueger David C, et al. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B[J]. The Journal of Biological Chemistry, 1989,264(26):15726-15737. URL pmid: 2670946 | 
| [36] | Kruger Rick J, Siegel Lewis M. Spinach siroheme enzyme: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase[J]. Biochemistry, 1982,21:2892-2904. URL pmid: 7104302 | 
| [37] | Simate Geoffrey S, Sehliselo Ndlovu. Acid mine drainage: Challenges and opportunities[J]. Journal of Environmental Chemical Engineering, 2014,2(3). | 
| [38] | Fu Fenglian, Wang Qi. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011,92(3). doi: 10.1016/j.jenvman.2010.10.037 URL pmid: 21084149 | 
| [39] | Simate Geoffrey S, Ndlovu Sehliselo. Acid mine drainage: Challenges and opportunities[J]. Journal of Environmental Chemical Engineering, 2014,2(3). | 
| [40] | Tolonen Emma-Tuulia, Sarpola Arja, Tao, et al. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals[J]. Chemosphere, 2014,117. doi: 10.1016/j.chemosphere.2014.09.090 URL pmid: 25461935 | 
| [41] | Rabus R, Ruepp A, Frickey T, et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments[J]. Environmental Microbiology, 2004,6(9). doi: 10.1111/j.1462-2920.2004.00668.x URL pmid: 15305912 | 
| [42] | 狄军贞, 李拓达, 赵微. 硫酸盐还原菌利用不同生物质碳源对酸性矿山废水的处理[J]. 煤炭学报, 2019,44(6):1915-1922. | 
| [43] | Jong Tony, Parry David L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003,37(14). doi: 10.1016/S0043-1354(03)00211-2 URL pmid: 12834729 | 
| [44] | 魏巍, 许艳丽, 宋长春, 等. 三江平原沼泽湿地开垦及恢复对土壤硫酸盐还原菌数量分布的影响[J]. 湿地科学, 2008(2):298-303. | 
| [45] | Wang Ming, Tang Zhong, Chen Xue-Ping, et al. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains[J]. Environmental pollution, 2019,247. doi: 10.1016/j.envpol.2019.01.100 URL pmid: 30823336 | 
| [46] | Williams P N, Antia V, Claire D, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 2007,41(19):6854-6859. | 
| [47] | Zhang C P, Wu P, Tang C Y, et al. Assessment of arsenic distribution in paddy soil and rice plants of a typical karst basin affected by acid mine drainage in southwest China[J]. Environment and Pollution, 2013,2(2):27-38. | 
| [48] | Postgate J. The Sulphate reducing bacteria[M]. Cambridge University Press, 1984: 10-82. | 
| [49] | Isalm F S, Gault A G, Boothman C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments[J]. Nature, 2004,430:68. doi: 10.1038/nature02638 URL pmid: 15229598 | 
| [50] | 支立峰, 余涛, 朱英国, 等. 镉胁迫引起烟草悬浮细胞程序性死亡[J]. 武汉植物学研究, 2006,24(5):403-407. | 
| [51] | 吕人豪, 苗桂时, 扈芝香. 几种土壤的硫酸盐还原菌(Desulfovibrio desulfuricans)的研究[J]. 微生物学报, 1973,13(1):77-80. | 
| [52] | Sun Cheng, Xu Jin, Wang Fuhui. Interaction of sulfate-reducing bacteria and carbon steel Q325 in biofilm[J]. Industrial & engineering chemistry research, 2011,50(22):12797-12806. | 
| [53] | 陈超, 吴佳佳, 张盾. 硫酸盐还原菌对EH40焊接钢海水腐蚀的影响[J]. 装备环境工程, 2018,15(10):51-59. | 
| [54] | Tingyue Gu, Ru Jia, Tuba, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J]. Journal of Materials Science & Technology, 2019,35(4):631-636. | 
| [55] | Pu Y, Tang F, Adam P M, et al. Fate and characterization factors of nanoparticles in seventeen subcontinental freshwaters: a case study on copper nanoparticles[J]. Environ Sci Technol, 2016,50:9370-9379. doi: 10.1021/acs.est.5b06300 URL pmid: 27472045 | 
| [56] | Chen Zhaoyu, Gao Shu-hong, Min, et al. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium[J]. Environment International, 2019,125. doi: 10.1016/j.envint.2018.12.016 URL pmid: 30735961 | 
| [57] | Walker C B, He Z L, Yang Z K, et al. The electron transfer system of syntrophically grown Desulfovibrio vulgaris[J]. J Bacteriol, 2009,191:5793-5801. doi: 10.1128/JB.00356-09 URL pmid: 19581361 | 
| [58] | Gao S H., Ho J Y, Fan L, et al. Antimicrobial effects of free nitrous acid on Desulfovibrio vulgaris: implications for sulfifide induced concrete corrosion[J]. Appl Environ Microbiol, 2016,82:5563-5575. doi: 10.1128/AEM.01655-16 URL pmid: 27371588 | 
| [59] | Chang I.S, Groh J L, Ramsey M M, et al. Differential expression of Desulfovibrio vulgaris genes in response to Cu(II) and Hg(II) toxicity[J]. Appl Environ Microbiol, 2004,70:1847-1851. doi: 10.1128/aem.70.3.1847-1851.2004 URL pmid: 15006815 | 
| [60] | 于桥. 对乳酸乙酯再认识[J]. 酿酒科技, 2001(3):19-20. | 
| [61] | 孙丹. 丙酸杆菌耐酸菌株的选育及其应用[D]. 保定:河北大学, 2017. | 
| [62] | London J. Regulation and function of lactate oxidation in Streptococcus faecium[J]. Journal of Bacteriology, 1968,95(4). doi: 10.1128/JB.95.4.1450-1460.1968 URL pmid: 4967199 | 
| [63] | McInerney M J, Bryant M P. Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on Acetate Degradation[J]. Applied and Environmental Microbiology, 1981,41(2). doi: 10.1128/AEM.41.2.337-341.1981 URL pmid: 16345706 | 
| [64] | 胡承, 应鸿, 许德富, 等. 窖泥微生物群落的研究及其应用[J]. 酿酒科技, 2005(3):34-38. | 
| [65] | 唐心强, 左风华, 王虹. 基于共沸蒸馏从黄水中获取白酒调味品的方法[J]. 酿酒科技, 2017(7):107-114. | 
| [66] | 栗连会. 泸型酒酒醅中乳酸菌和乳酸降解菌的多样性和代谢特性[D]. 无锡:江南大学, 2016. | 
| [67] | 祁晨. 阴极菌群对MFC脱氮动力学影响研究[D]. 合肥:合肥工业大学, 2018. | 
| [68] | Ieropoulos I A, Creenman J, Melhuish C, et al. Comparative study of three types of microbial fuel cell[J]. Enzyme Microb Technol, 2005,37:238-245. doi: 10.1016/j.enzmictec.2005.03.006 URL | 
| [69] | Rabaey K, Boon N, Hofte M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Appl Environ Microbiol, 2004,70:5373-5382. doi: 10.1128/AEM.70.9.5373-5382.2004 URL pmid: 15345423 | 
| [70] | Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens[J]. Enzyme Microb Technol, 2002,30:145-152. doi: 10.1016/S0141-0229(01)00478-1 URL | 
| [71] | Zhang T, Zeng Y, Chen S, et al. Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes[J]. Electrochemistry Communications, 2007,9(3):349-353. doi: 10.1016/j.elecom.2006.09.025 URL | 
| [72] | 郑碧娟. 硫酸盐还原菌微生物燃料电池基础研究[D]. 武汉:华中科技大学, 2009. | 
| [73] | 戴群莹, 彭娟, 董旭东. 多环芳烃对人类健康影响的研究进展[J]. 重庆医学, 2014,43(21):2811-2813. | 
| [74] | Tsai J C, Kumar M, Lin J G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway[J]. Journal of Hazardous Materials, 2009,164(2):847-855. | 
| [75] | 张净瑞, 朱葛夫, 潘小芳, 等. 不同碳硫比条件下底物类型对硫酸盐去除的差异性[J]. 环境工程技术学报, 2015,5(4):253-258. | 
| [76] | 赵旭, 王文丽, 李娟, 等. 低温秸秆降解复合微生物菌剂的研究进展[J]. 生物技术通报, 2014(11):55-61. | 
| [77] | 杨健, 李家勇. 大型白酒糟固态发酵生产生物饲料工艺过程控制技术[J]. 现代农业科技, 2019(20):218-220. | 
| [1] | 孙莹, 王海曼, 宋刚, 葛菁萍. 利用氦氖激光诱变提高枯草芽孢杆菌纤溶酶活力的研究[J]. 中国农学通报, 2020, 36(35): 28-36. | 
| [2] | 石吕,刘建,魏亚凤,李波,薛亚光,毕智超. 沼液在农业领域的资源化利用现状[J]. 中国农学通报, 2019, 35(35): 109-117. | 
| [3] | 金晓婷,张志勇,杨 栋,余向阳. 阿魏侧耳(Pleuratus ferulae)产漆酶条件的优化及其酶学性质研究[J]. 中国农学通报, 2016, 32(33): 151-156. | 
| [4] | 覃瀚仪,李 魏,戴良英. 植物代谢产物在抗病反应中的功能研究进展[J]. 中国农学通报, 2015, 31(18): 256-259. | 
| [5] | 吕婧 刘贯山 晁江涛 孙玉合. 影响烟草香气物质合成代谢途径关键酶基因的研究进展[J]. 中国农学通报, 2014, 30(4): 49-57. | 
| [6] | 马忠友 邓盾 汪建飞 谢越. 一组混合菌群还原硫酸盐的特性[J]. 中国农学通报, 2013, 29(8): 184-188. | 
| [7] | 王继雯 甄静 刘莹莹 李冠杰. 一株有机磷农药高效降解菌的筛选及酶学性质研究[J]. 中国农学通报, 2013, 29(21): 83-87. | 
| [8] | 林建城 陈燕红 张雄. 交联壳聚糖磁性微球的制备及固定化果胶酶研究[J]. 中国农学通报, 2012, 28(33): 204-208. | 
| [9] | 尚宏丽 顾英 付莉 那鑫娜. SH-110菌海藻糖合成酶基因克隆、表达及酶学性质研究[J]. 中国农学通报, 2012, 28(21): 169-173. | 
| [10] | 孙佑赫 周开艳 熊智. 松毛虫肠道产蛋白酶菌株的筛选鉴定及培养条件研究[J]. 中国农学通报, 2012, 28(16): 18-21. | 
| [11] | 丛大鹏 李雅华 咸洪泉. 棘孢木霉几丁质酶基因的原核表达、复性、纯化以及酶学性质研究[J]. 中国农学通报, 2012, 28(11): 34-38. | 
| [12] | 肖楚 刘佳 许修宏. 黑木耳漆酶酶学性质的研究[J]. 中国农学通报, 2011, 27(25): 158-161. | 
| [13] | 于菲 王秀芹 黄卫东 战吉宬. ‘赤霞珠’果实中两种己糖激酶同工酶部分酶学性质的研究[J]. 中国农学通报, 2011, 27(22): 234-238. | 
| [14] | 万善霞,滑 静,王文平,张淑萍. 杏鲍菇漆酶部分酶学性质的研究[J]. 中国农学通报, 2009, 25(21): 107-109. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
