中国农学通报 ›› 2021, Vol. 37 ›› Issue (35): 98-103.doi: 10.11924/j.issn.1000-6850.casb2021-0048
收稿日期:
2021-01-18
修回日期:
2021-04-06
出版日期:
2021-12-15
发布日期:
2022-01-07
通讯作者:
万丹
作者简介:
郭鎏,女,1997年出生,湖南桃源人,博士在读,研究方向为动物生态营养与环境。通信地址:410125 湖南省长沙市芙蓉区远大二路644号 中科院亚热带农业生态研究所,E-mail: 基金资助:
Guo Liu(), Liu Shuan, Yin Yulong, Wan Dan(
)
Received:
2021-01-18
Revised:
2021-04-06
Online:
2021-12-15
Published:
2022-01-07
Contact:
Wan Dan
摘要:
全球约有1/2的人口正面临着微量营养素摄取不足“隐性饥饿”的问题,学龄前儿童、孕龄女性的缺铁贫血比例更是高达1/3。缺铁会造成机体氧气运输和造血过程受阻、金属酶的合成与功能异常、能量代谢障碍、机体免疫功能下降等。提高农副产品中微量营养素,尤其是铁的含量和生物有效性,对解决这一人类营养与健康问题具有重大的科学和实践意义。动物源铁主要以血红素铁和铁蛋白形式存在,其生物利用率显著高于植物源铁和常见铁补充剂,是较为理想的补铁源。但大部分动物源食品中的铁含量不高,如何增加动物肉、蛋、奶中铁含量鲜有研究。本文从畜禽体内铁代谢和分布特征出发,对比主要铁源在生物体内的生物利用效率,分析影响畜禽产品中铁富集的主要因素,并综述了富铁动物性食品的研发进展和市场应用前景。
中图分类号:
郭鎏, 刘栓, 印遇龙, 万丹. 动物源富铁功能食品开发研究进展[J]. 中国农学通报, 2021, 37(35): 98-103.
Guo Liu, Liu Shuan, Yin Yulong, Wan Dan. Advances in Development of Animal-Derived Iron-Rich Functional Food[J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 98-103.
[1] |
Anne-Sylvia S, Alain B, Mariane D M, et al. Young children formula consumption and iron deficiency at 24 months in the general population: A national-level study[J]. Clinical Nutrition, 2021, 40(1):166-173.
doi: 10.1016/j.clnu.2020.04.041 pmid: 32507584 |
[2] | Ahmad A M R, Ahmed W, Iqball S, et al. Iron and prebiotic fortified flour improves the immune function of iron deficient women of childbearing age[J]. Pakistan Journal of Pharmaceutical Sciences, 2020, 33(1):253-261. |
[3] |
Ohanenye I C, Emenike C U, Mensi A, et al. Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa[J]. Scientific African, 2020, 11:e00667.
doi: 10.1016/j.sciaf.2020.e00667 URL |
[4] | Dengchang L I, Che Y, Dong Z, et al. Effect of different sources of protein ingredients and iron on laying production and iron contents in eggs of broiler breeder[J]. China Feed, 2018. |
[5] |
Hall A G, Ngu T, Nga H T, et al. An Animal-Source Food Supplement Increases Micronutrient Intakes and Iron Status among Reproductive-Age Women in Rural Vietnam[J]. Journal of Nutrition, 2017, 147(6):1200-1207.
doi: 10.3945/jn.116.241968 URL |
[6] |
Herter-Aeberli I, Fischer M M, Egli I M, et al. Addition of Whole Wheat Flour During Injera Fermentation Degrades Phytic Acid and Triples Iron Absorption from Fortified Tef in Young Women[J]. Journal of Nutrition, 2020, 150(10):2666-2672.
doi: 10.1093/jn/nxaa211 URL |
[7] |
Haider L M, Schwingshackl L, Hoffmann G, et al. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis[J]. Crit Rev Food Sci Nutr, 2018, 58(8):1359-1374.
doi: 10.1080/10408398.2016.1259210 pmid: 27880062 |
[8] | Db K-K, Akusu M, Osemene-Onwochei A. Micronutrient Composition and its Bio-availability in Complementary Foods Developed From Cereal (Millet/Maize), Soybean and Monkey kola Flours[J]. Nutrition Research, 2019, 3:24. |
[9] | Shinoda S, Azuma Y. Heme iron absorption and gene expression of proteins related to heme iron absorption in rat small intestine[J]. Ann Nutr Metab, 2017, 71:431-432. |
[10] | Azucenas C P, Bonamer J P, Ruwe T A, et al. Functional properties of mouse ferroportin, a cellular iron-export protein[J]. The FASEB Journal, 2019, 33(S1). |
[11] |
Schwartz A J, Das N K, Ramakrishnan S K, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload[J]. Journal of Clinical Investigation, 2019, 129(1):336-348.
doi: 10.1172/JCI122359 pmid: 30352047 |
[12] |
Xu E, Chen M, Zheng J S, et al. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis[J]. Biochemical and Biophysical Research Communications, 2018, 503(3):1905-1910.
doi: 10.1016/j.bbrc.2018.07.134 URL |
[13] |
Doguer C, Ha J H, Gulec S, et al. Intestinal hephaestin potentiates iron absorption in weanling, adult, and pregnant mice under physiological conditions (vol 1, pg 1335, 2017)[J]. Blood Advances, 2018, 2(10):1115-1115.
doi: 10.1182/bloodadvances.2018020164 URL |
[14] |
Fuqua B K, Lu Y, Frazer D M, et al. Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6(4):405-427.
doi: 10.1016/j.jcmgh.2018.06.006 pmid: 30182051 |
[15] | Blauw L L, Rensen P C. Role of homeostatic iron regulator protein in hepatic cholesterol metabolism: interaction between Kupffer cells and hepatocytes?[J]. European Heart Journal, 2020. |
[16] |
Scott C L, Guilliams M. The role of Kupffer cells in hepatic iron and lipid metabolism[J]. Journal of hepatology, 2018, 69(5):1197-1199.
doi: 10.1016/j.jhep.2018.02.013 URL |
[17] |
Vico G D, Martano M, Maiolino P, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J]. Veterinary Medicine and Science, 2020, 6(3):272-276.
doi: 10.1002/vms3.v6.3 URL |
[18] | Picard E. Iron and Transferrin[J]. Acta Ophthalmologica, 2019, 97(S263). |
[19] |
Kleven M D, Dlakić M, Lawrence C M. Characterization of a Single b-type Heme, FAD, and Metal Binding Sites in the Transmembrane Domain of Six-transmembrane Epithelial Antigen of the Prostate (STEAP) Family Proteins[J]. Journal of Biological Chemistry, 2015, 290(37):22558-22569.
doi: 10.1074/jbc.M115.664565 pmid: 26205815 |
[20] | Zhang J, Chen X, Hong J, et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses[J]. Science China-Life Sciences, 2020. |
[21] | Gao G, Li J, Zhang Y, et al. Cellular Iron Metabolism and Regulation[J]. Advances in experimental medicine and biology, 2019, 1173:21-32. |
[22] |
Pretorius B, Schönfeldt H C, Hall N. Total and haem iron content lean meat cuts and the contribution to the diet[J]. Food Chemistry, 2016, 193:97-101.
doi: 10.1016/j.foodchem.2015.02.109 pmid: 26433293 |
[23] |
Lombardi-Boccia G, Martinez-Dominguez B, Aguzzi A. Total Heme and Non-heme Iron in Raw and Cooked Meats[J]. Journal of Food Science, 2010, 67(5):1738-1741.
doi: 10.1111/jfds.2002.67.issue-5 URL |
[24] |
Valenzuela C, Lopez De Romana D, Olivares M, et al. Total Iron and Heme Iron Content and their Distribution in Beef Meat and Viscera[J]. Biological Trace Element Research, 2009, 132(1-3):103-111.
doi: 10.1007/s12011-009-8400-3 pmid: 19475341 |
[25] |
Simonetti A, Perna A, Giudice R, et al. The effect of high pre-slaughter environmental temperature on meat quality traits of Italian autochthonous pig Suino Nero Lucano[J]. Animal Science Journal, 2018, 89(7):1020-1026.
doi: 10.1111/asj.13007 pmid: 29744955 |
[26] |
Jacobson M, Fenton F. Effects of three levels of nutrition and age of animal on the quality of beef. ii. color, total iron content, and pH[J]. Journal of Food Science, 2010, 21(4):427-435.
doi: 10.1111/jfds.1956.21.issue-4 URL |
[27] |
Zotte A D, Cullere M, Alberghini L, et al. Proximate composition, fatty acid profile, and heme iron and cholesterol content of rabbit meat as affected by sire breed, season, parity order, and gender in an organic production system[J]. Czech Journal of Animal Science, 2016, 61(9):383-390.
doi: 10.17221/CJAS URL |
[28] |
Wan D, Zhang Y M, Wu X, et al. Maternal dietary supplementation with ferrous N-carbamylglycinate chelate affects sow reproductive performance and iron status of neonatal piglets[J]. Animal : an international journal of animal bioscience, 2018, 12(7):1372-1379.
doi: 10.1017/S1751731117003172 URL |
[29] |
Lin Y, Shu X, Fu Z, et al. Influences of different Fe sources on Fe bioavailability and homeostasis in SD rats[J]. Animal Science Journal, 2019, 90(10):1377-1387.
doi: 10.1111/asj.13254 pmid: 31436009 |
[30] |
Xie C, Elwan H a M, Elnesr S S, et al. Effect of iron glycine chelate supplementation on egg quality and egg iron enrichment in laying hens[J]. Poultry Science, 2019, 98(12):7101-7109.
doi: 10.3382/ps/pez421 pmid: 31347692 |
[31] |
Bess F, Vieira S L, Favero A, et al. Dietary iron effects on broiler breeder performance and egg iron contents[J]. Animal Feed Science and Technology, 2012, 178(s1-2):67-73.
doi: 10.1016/j.anifeedsci.2012.10.002 URL |
[32] | Yan L, Weiren Y, Donghua D, et al. Effect of different sources and levels of iron in the diet of sows on iron status in neonatal pigs[J]. Animal nutrition (Zhongguo xu mu shou yi xue hui), 2018, 4(2):197-202. |
[33] |
Inkee P, Hankyu L, Sewon P. Effects of Organic Iron Supplementation on the Performance and Iron Content in the Egg Yolk of Laying Hens[J]. The Journal of Poultry Science, 2009, 46(3):198-202.
doi: 10.2141/jpsa.46.198 URL |
[34] | Sarlak S, Tabeidian S A, Toghyani M, et al. Effects of Replacing Inorganic with Organic Iron on Performance, Egg Quality, Serum and Egg Yolk Lipids, Antioxidant Status, and Iron Accumulation in Eggs of Laying Hens[J]. Biol Trace Elem Res, 2020: 14. |
[35] | Huan H, Yang Q, Zeyu Z, et al. Dual action of vitamin C in iron supplement therapeutics for iron deficiency anemia: prevention of liver damage induced by iron overload[J]. Food & function, 2018, 9(10):5390-5401. |
[36] |
Rabiee A R, Lean I J, Stevenson M A, et al. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis[J]. Journal of Dairy Science, 2010, 93(9):4239-4251.
doi: 10.3168/jds.2010-3058 pmid: 20723697 |
[37] |
Wan D, Wu Q H, Ni H J, et al. Treatments for Iron Deficiency (ID): Prospective Organic Iron Fortification[J]. Current pharmaceutical design, 2019, 25(3):325-332.
doi: 10.2174/1381612825666190319111437 URL |
[38] |
Warner R D, Kearney G, Hopkins D L, et al. Retail colour stability of lamb meat is influenced by breed type, muscle, packaging and iron concentration[J]. Meat Science, 2017, 129(JUL.):28-37.
doi: 10.1016/j.meatsci.2017.01.008 URL |
[39] | Zhang M, Yan W, Wang D, et al. Effect of myoglobin, hemin and ferric iron on quality of chicken breast meat[J]. Asian Australasian Journal of Animal Sciences, 2020. |
[40] | Lin X, Gou Z, Wang Y, et al. Effects of Dietary Iron Level on Growth Performance, Immune Organ Indices and Meat Quality in Chinese Yellow Broilers[J]. Animals : an Open Access Journal from MDPI, 2020, 10(4). |
[41] | Woloshun R, Yu Y, Xu X, et al. Amino acids Influenence DMT1 Trafficking in Duodental Enterocytes and Modulate Iron Absorption[J]. Faseb Journal, 2020, 34. |
[42] |
Gulec S, Collins J F. Molecular Mediators Governing Iron-Copper Interactions[J]. Annual Review of Nutrition, 2014, 34:95-116.
doi: 10.1146/nutr.2014.34.issue-1 URL |
[43] |
Myint Z W, Oo T H, Thein K Z, et al. Copper deficiency anemia: review article[J]. Annals of hematology, 2018, 97(9):1527-1534.
doi: 10.1007/s00277-018-3407-5 pmid: 29959467 |
[44] |
Witkowska Z, Świniarska M, Korczyński M, et al. Biofortification of hens' eggs with microelements by innovative bio-based dietary supplement[J]. Journal of animal physiology and animal nutrition, 2019, 103(2):485-492.
doi: 10.1111/jpn.13027 pmid: 30604901 |
[45] |
Zhang Y M, Wan D, Zhou X H, et al. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs[J]. Biochemical and Biophysical Research Communications, 2017, 490(4):1210-1214.
doi: 10.1016/j.bbrc.2017.06.187 URL |
[46] |
Pradhan P, Vijayan V, Gueler F, et al. Interplay of Heme with Macrophages in Homeostasis and Inflammation[J]. Int J Mol Sci, 2020, 21(3):740.
doi: 10.3390/ijms21030740 URL |
[47] |
Deschemin J C, Noordine M L, Remot A, et al. The microbiota shifts the iron sensing of intestinal cells[J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2016, 30(1):252-261.
doi: 10.1096/fsb2.v30.1 URL |
[48] |
Das N K, Schwartz A J, Barthel G, et al. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis[J]. Cell Metab, 2020, 31(1):115-130.e116.
doi: 10.1016/j.cmet.2019.10.005 URL |
[49] |
Abukhader M M. Comparative assessment and suitability of iron and the nutritional composition of fortified foods for young children[J]. Nutr Health, 2018, 24(2):103-109.
doi: 10.1177/0260106018767686 URL |
[50] |
Luo Y W, Xie W H, Jin X X, et al. Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes[J]. CyTA-J Food, 2014, 12(1):22-26.
doi: 10.1080/19476337.2013.782071 URL |
[51] |
Subash R, Elango A. Microencapsulated iron for fortification in yoghurt[J]. Food Science Research Journal, 2015, 6(2):258-262.
doi: 10.15740/HAS/FSRJ URL |
[1] | 王强盛, 余坤龙, 甄若宏, 甘立军, 张慧. 功能农业发展的必要性及途径分析[J]. 中国农学通报, 2022, 38(26): 144-149. |
[2] | 高 芸,赵芝俊. 具有保健功能农产品定价策略分析——以蜂蜜为例[J]. 中国农学通报, 2015, 31(20): 76-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||