| [1] | 王凯, 范志新, 田昊伦, 等. 非洲猪瘟的流行概况及防控策略[J]. 中国兽医学报, 2019, 39(5):1027-1034. | 
																													
																						| [2] | MA M, WANG H H, HUA Y, et al. African swine fever in China: Impacts, responses, and policy implications[J]. Food policy, 2021(3):102065. | 
																													
																						| [3] | 罗玉子, 孙元, 王涛, 等. 非洲猪瘟——我国养猪业的重大威胁[J]. 中国农业科学, 2018, 51(21):4177-4187.  doi: 10.3864/j.issn.0578-1752.2018.21.016
 | 
																													
																						| [4] | WU K, LIU J, WANG L, et al. Current State of Global African swine fever vaccine development under the prevalence and transmission of ASF in China[J]. Vaccines, 2020, 8(3). | 
																													
																						| [5] | 马兴树, 宋金祥. 非洲猪瘟病毒免疫及基因工程疫苗研究进展[J]. 中国畜牧兽医, 2019, 46(11):3404-3413. | 
																													
																						| [6] | 包静月, 王志亮. 非洲猪瘟流行病学研究进展[J]. 中国动物检疫, 2013, 30(6):72-76. | 
																													
																						| [7] | 扈荣良, 于婉琪, 陈腾. 非洲猪瘟及防控技术研究现状[J]. 中国兽医学报, 2019, 39(2):357-369. | 
																													
																						| [8] | CHEN J. Prevention and control strategies of African swine fever and progress on pig farm repopulation in China[J]. Viruses, 2021,13. | 
																													
																						| [9] | OIE Terrestrial Manual 2012: Chapter 2.8.1, African Swine Fever[EB/OL]. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.08.01_ASF.pdf.2018-09-22.  | 
																													
																						| [10] | ZSAK L, BORCA MV, RISATTI GR, ZSAK A, et al. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. Journal of clinical microbiology, 2005, 43(1):112-9.  pmid: 15634958
 | 
																													
																						| [11] | WANG Y, XU L, NOLL L, STOY C, et al. Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control[J]. Transboundary and emerging diseases, 2020, 67(6):2446-2454.  doi: 10.1111/tbed.v67.6    
																																					URL
 | 
																													
																						| [12] | OURA C A L, EDWARDS L, BATTEN C A. Virological diagnosis of African swine fever—Comparative study of available tests[J]. Virus research, 2013. | 
																													
																						| [13] | WU X L, XIAO L, SONG Y, et al. A novel high-sensitivity droplet digital PCR (ddPCR) for detection of African swine fever virus[J]. Microbiology China, 2017. | 
																													
																						| [14] | LI Z, JI W, LI G X, et al. A highly sensitive 1-tube nested real-time RT-PCR assay using LNA-modified primers for detection of respiratory syncytial virus - ScienceDirect[J]. Diagnostic microbiology and infectious disease, 2019, 93(2):101-106.  doi: S0732-8893(18)30333-X    
																																																	pmid: 30266400
 | 
																													
																						| [15] | FENG Z S, ZHAO L, WANG J, et al. A multiplex one-tube nested real-time RT-PCR assay for simultaneous detection of respiratory syncytial virus, human rhinovirus and human metapneumovirus[J]. Virology journal, 2018, 15(1). | 
																													
																						| [16] | WANG J, CAI K, ZHANG R, et al. Novel one-step single-tube nested quantitative real-time PCR Assay for highly sensitive detection of SARS-CoV-2[J]. Analytical Chemistry, 2020, 92(13):9399-9404.  doi: 10.1021/acs.analchem.0c01884    
																																																	pmid: 32438806
 | 
																													
																						| [17] | LUCA M, DARIO D B, MICHELA V, et al. Allele Specific locked nucleic acid quantitative PCR (ASLNAqPCR): An accurate and cost-effective Assay to diagnose and quantify KRAS and BRAF mutation[J]. Plos one, 2012, 7(4):e36084.  doi: 10.1371/journal.pone.0036084    
																																					URL
 | 
																													
																						| [18] | BALLANTYNE K N, OORSCHOT R, MITCHELL R J. Locked nucleic acids in PCR primers increase sensitivity and performance[J]. Genomics, 2008, 91(3):301-305.  doi: 10.1016/j.ygeno.2007.10.016    
																																																	pmid: 18164179
 | 
																													
																						| [19] | SHEN C H. Amplification of nucleic acids[J]. Diagnostic molecular biology, 2019:215-247. | 
																													
																						| [20] | ISHIGE T, ITOGA S, MATSUSHITA K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in Cancer[J]. Advances in clinical chemistry, 2018, 83:53-72.  doi: S0065-2423(17)30061-6    
																																																	pmid: 29304903
 | 
																													
																						| [21] | RQZAB C, ZHENG L C, GXL D, et al. A highly sensitive one-tube nested quantitative real-time PCR assay for specific detection of Bordetella pertussis using the LNA technique[J]. International journal of infectious diseases, 2020, 93:224-230.  doi: 10.1016/j.ijid.2020.01.053    
																																					URL
 | 
																													
																						| [22] | PATEL P, LANDT O, KAISER M, et al. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses[J]. Virology journal, 2013,10. | 
																													
																						| [23] | 吴亚楠, 朱潇静, 周博伦, 等. 非洲猪瘟病毒TaqMan荧光定量PCR检测方法的建立[J]. 中国兽医学报, 2020, 40(5):888-891. | 
																													
																						| [24] | 李洪利, 曹金山, 王君玮, 等. 非洲猪瘟病毒实时荧光定量PCR检测方法的建立及应用[J]. 中国畜牧兽医, 2012, 39(6):37-40. | 
																													
																						| [25] | WANG J, ZHAO L, SUN J H, et al. Development of an innovative one-step nested PCR strategy for virus detection using the LNA technique[J]. Science China life sciences, 2019, 62(3):3. | 
																													
																						| [26] | JOHN J, MAURER. Rapid detection and limitations of molecular techniques[J]. Annual review of food science and technology, 2011, 2(1):259-279.  doi: 10.1146/food.2011.2.issue-1    
																																					URL
 | 
																													
																						| [27] | LEI S W, CHEN S, ZHONG Q P. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects[J]. International journal of biological macromolecules, 2021, 184(4). | 
																													
																						| [28] | CILLONI D, PETITI J, ROSSO V, et al. Digital PCR in myeloid malignancies: Ready to replace quantitative PCR?[J]. International journal of molecular sciences, 2019, 20(9). |