欢迎访问《中国农学通报》,

中国农学通报 ›› 2019, Vol. 35 ›› Issue (1): 154-158.doi: 10.11924/j.issn.1000-6850.casb17070066

• 乡村振兴 • 上一篇    下一篇

河南省粮食产量影响因素和预测方法

姜新   

  1. 中国农业科学院农田灌溉研究所
  • 收稿日期:2017-07-13 修回日期:2018-12-06 接受日期:2017-08-24 出版日期:2019-01-02 发布日期:2019-01-02
  • 通讯作者: 姜新
  • 基金资助:
    中国农业科学院创新团队“农田排水技术与产品”;中国农业科学院科研院所基本科研业务费专项(FIRI2017-17);中国农业科学院科研院 所基本科研业务费专项(FIRI2017-18)。

Influencing Factors and Forecasting Methods of Grain Yield in Henan Province

  • Received:2017-07-13 Revised:2018-12-06 Accepted:2017-08-24 Online:2019-01-02 Published:2019-01-02

摘要: 粮食生产是国民经济重要的组成部分,粮食产量对于保证我国的粮食安全具有重要意义。旨在提高粮食产量预测的科学性和准确性,在分析现有预测方法的基础上,文中将灰色理论和神经网络有机地结合在一起,通过灰色理论关联度分析,在众多影响粮食产量的因素中确定出主要的、客观的因素指标,通过这些指标利用人工神经网络具有的非线性建模和极高的拟合精度特点,应用到粮食产量预测中去。结果表明:人工神经网络预测的最大误差1.21%,平均误差0.63%。预测精度较高。为粮食产量预测提供了一种科学的、有效的预测方法。

Abstract: Grain production is an important part of the national economy, and grain yield is significant for guaranteeing grain security in China. In order to improve the scientific and accurate prediction of grain yield, based on the analysis of the existing prediction methods, the grey theory and neural network were combined organically, the main and objective factor indexes were determined from many influencing factors on grain yield by grey correlation analysis. These indexes were applied in the prediction of grain yield with the artificial neural network. The results showed that the maximum error of the artificial neural network prediction was 1.21%, the average error was 0.63%, and the prediction accuracy was relatively high. This study provides a scientific and effective forecasting method for grain yield.

中图分类号: