中国农学通报 ›› 2022, Vol. 38 ›› Issue (26): 9-14.doi: 10.11924/j.issn.1000-6850.casb2021-0757
所属专题: 生物技术
收稿日期:
2021-08-11
修回日期:
2021-10-22
出版日期:
2022-09-15
发布日期:
2022-09-09
通讯作者:
张晓娟
作者简介:
权莹,女,2001年出生,陕西咸阳人,本科,研究方向为植物分子遗传。通信地址:723001 陕西省汉中市汉台区东一环路陕西理工大学生工学院。
基金资助:
QUAN Ying1, ZHANG Xiaojuan1(), ZHAO Hui2, SUN Xiaomin3, MA Xiuqi1
Received:
2021-08-11
Revised:
2021-10-22
Online:
2022-09-15
Published:
2022-09-09
Contact:
ZHANG Xiaojuan
摘要:
CRISPR/Cas9系统是一项简单、高效的基因定点编辑技术,在植物遗传改良及作物良种选育等方面具有重要的应用价值。本研究主要介绍了CRISPR/Cas9的原理及构建方法,论述了近年来CRISPR/Cas9技术在植物基因功能及基因表达调控、植物基因组的定向编辑以及作物分子育种中的应用及研究进展,分析了该基因编辑系统的主要影响因素及优化改进方式,探讨了该系统在应用中的问题及解决途径并对今后发展方向进行了展望,为该技术在植物基因组定点编辑及作物遗传育种等领域研究提供参考。
中图分类号:
权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14.
QUAN Ying, ZHANG Xiaojuan, ZHAO Hui, SUN Xiaomin, MA Xiuqi. CRISPER/Cas9 System in Plant Genome Modification and Crop Genetics and Breeding: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 9-14.
[1] |
MIGLANI G S. Genome editing in crop improvement: present scenario and future prospects[J]. Journal of crop improvement, 2017, 31(4):453-559.
doi: 10.1080/15427528.2017.1333192 URL |
[2] | 蒲强, 罗嘉, 沈林園,等. CRISPR/Cas9基因组编辑技术的研究进展及其应用[J]. 中国生物工程杂志, 2015, 35(11):77-84. |
[3] | 高耀辉, 马斌, 肖凤洁,等. CRISPR/Cas9系统在园林植物中的研究展望[J]. 北方园艺, 2019(15):133-140. |
[4] | FENG Z Y, MAO Y F, XU N F et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modificati ons in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of america, 2014, 111(12):4632-4637. |
[5] |
JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/ sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic acids research, 2013, 41(20):e188.
doi: 10.1093/nar/gkt780 URL |
[6] |
LIANG Z, ZHANG K, CHEN K.L, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. Journal of genetics and genomics, 2014, 41(2):63-68.
doi: 10.1016/j.jgg.2013.12.001 URL |
[7] |
RON M, KAJALA K, PAULUZZI G, et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specifific gene expression and function using tomato as a model[J]. Plant physiology, 2014, 166(2):455-469.
doi: 10.1104/pp.114.239392 URL |
[8] |
LAWRENSON T, SHORINOLA O, STACEY N, et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease[J]. Genome biology, 2015, 16(1):258-270.
doi: 10.1186/s13059-015-0826-7 URL |
[9] | ZHANG B, YANG X, YANG C, et al. Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia[J]. Scientific reports, 2016(6):20315. |
[10] | REN C, LIU X, ZHANG Z, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)[J]. Scientific reports, 2016(6):32289. |
[11] |
JIA H G, WANG N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PLoS one, 2014, 9(4) 4:e93806.
doi: 10.1371/journal.pone.0093806 URL |
[12] | CAI Y P, LI C, LIU X J, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots[J]. PLoS One, 2015, 10(8):1-13. |
[13] | IQBAL Z, SATTAR M N, SHAFIQ M. CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease[J]. Frontiers in plant science, 2016, 7(231):475. |
[14] |
ZHOU X H, JACOBS T B, XUE LJ, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy[J]. New phytologist, 2015, 208(2):298-301.
doi: 10.1111/nph.13470 URL |
[15] | MOHAN C. Genome editing in sugarcane: Challenges ahead[J]. Frontiers in plant science, 2016, 7(7):1542-1546. |
[16] |
TERNS M P, TERNS R M. CRISPR-based adaptive immune systems[J]. Current opinion in microbiology, 2011, 14(3):321.
doi: 10.1016/j.mib.2011.03.005 URL |
[17] |
BLAKE W, STERNBERG S H, DOUDNA JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331.
doi: 10.1038/nature10886 URL |
[18] | 魏泽辉, 贾存灵, 张智英. CRISPR/Cas9系统在基因表达调控中的应用[J]. 畜牧兽医学报, 2014, 45(9):1387-1392. |
[19] |
DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340):602-607.
doi: 10.1038/nature09886 URL |
[20] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
doi: 10.1126/science.1225829 URL |
[21] | 胡添源, 高伟, 黄璐琦. 展望CRISPR/Cas9基因编辑技术在药用植物研究中的应用[J]. 中国中药杂志, 2016, 41(16):2953-2957. |
[22] |
SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annual review of genetics, 2011, 45:247.
doi: 10.1146/annurev-genet-110410-132435 URL |
[23] | 宋时奎, 王影, 于洋,等. 运用CRISPR/Cas系统对植物基因组进行定点编辑[J]. 分子植物育种, 2014, 12(6):1059-1066. |
[24] |
ZHOU H B, LIU B, WEEKS D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic acids research, 2014, 42(17):10903-10914.
doi: 10.1093/nar/gku806 URL |
[25] |
SHAN Q W, WANG Y P, LI J, et al. Genome editing in rice and wheat using the CRISPR/Cas system[J]. Nature Protocols, 2014, 9(10):2395-2410.
doi: 10.1038/nprot.2014.157 URL |
[26] |
Miao J, Guo D, Zhang J, et al. Targeted mutagenesis in rice using CRISPR-Cas, system[J]. Cell research, 2013, 23(10):1233-1236.
doi: 10.1038/cr.2013.123 pmid: 23999856 |
[27] |
MA X, ZHANG Q, ZHU Q, et al. A robust CRISPR/Cas9 system for convenient, high efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular plant, 2015, 8(8):1274-1284.
doi: 10.1016/j.molp.2015.04.007 URL |
[28] |
YAN L H, WEI S W, WU Y R, et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system[J]. Molecular plant, 2015, 8(12):1820-1823.
doi: 10.1016/j.molp.2015.10.004 URL |
[29] |
PATTANAYAK V, LIN S, GUILINGER J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nature biotechnology, 2013, 31(9):839-843.
doi: 10.1038/nbt.2673 URL |
[30] |
CHO S W, KIM S, KIM Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome research, 2014, 24(1):132-141.
doi: 10.1101/gr.162339.113 URL |
[31] |
FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas9 nuclease specificity using truncated guide RNAs[J]. Nature biotechnology, 2014, 32(3):279-284.
doi: 10.1038/nbt.2808 URL |
[32] |
LI J F, NORVILLE J E, AACH J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature biotechnology, 2013, 31(8):688-691.
doi: 10.1038/nbt.2654 URL |
[33] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1219-1229. |
[34] | TSAI S Q, WYVEKENS N, KHAYTER C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nature biotechnology, 2014, 32:569576. |
[35] | Fauser F, SEHIML S, PUCHTA H. Both CRISPR/Cas based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana[J]. The plant jnurnal, 2014, 79(2):348-359. |
[36] |
MASAFUMI M, TOKI S, ENDO M. Parameter’s affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice[J]. Plant cell reports, 2015, 34(10):1807-1815.
doi: 10.1007/s00299-015-1826-5 URL |
[37] |
CHAKRABARTI A M, HENSER-BROWNHILL T, MONSERRAT J, et al. Target-specific precision of CRISPR-mediated genome editing[J]. Molecular cell, 2019, 73(4):699-713.
doi: 10.1016/j.molcel.2018.11.031 URL |
[38] |
HU X, MENG X, LIU Q, et al. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant biotechnology journal, 2018, 16:292-297.
doi: 10.1111/pbi.12771 URL |
[39] | 瞿礼嘉, 郭冬姝, 张金喆,等. CRISPR/Cas系统在植物基因组编辑中的应用[J]. 生命科学, 2015, 27(1):64-70. |
[40] |
HSU P D, SCOTT D A, WEINSTEIN J A et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature biotechnology, 2013, 31:827-832.
doi: 10.1038/nbt.2647 URL |
[41] | WANG F, WANG C, LIU P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS one, 2016, 11:e154027. |
[42] | 王凯婕, 安文静, 刘亚菲,等. CRISPR/Cas9技术编辑OsRhoGDI2基因导致水稻半矮化[J]. 生物工程学报, 2020, 36(5):1-9. |
[43] |
AUER T O, DEL BENE F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish[J]. Methods, 2014, 69(2):142-150.
doi: 10.1016/j.ymeth.2014.03.027 URL |
[44] |
SCHIML S, FAUSER F, PUCHTA H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny[J]. The plant journal, 2014, 80(6):1139-1150.
doi: 10.1111/tpj.12704 URL |
[45] |
沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 新疆农业科学, 2017, 1(1)1-10.
doi: 10.3969/j.issn.1004-1524.2017.01.01 |
[46] |
BIKARD D, JIANG W Y, SAMAI P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucleic acids research, 2013, 41:7429-7437.
doi: 10.1093/nar/gkt520 URL |
[47] |
PIATEK A, ALI Z, BAAZIM H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors[J]. Plant biotechnology journal, 2015, 13(4):578-589.
doi: 10.1111/pbi.12284 URL |
[48] |
CHENG A W, WANG H Y, YANG H, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system[J]. Cell research, 2013, 23:1163-1171.
doi: 10.1038/cr.2013.122 URL |
[49] |
ZETSCHE B, VOLZ S E, ZHANG F. Split-Cas9 architecture for inducible genome editing and transcription modulation[J]. Nature biotechnology, 2015, 33(2):139-142.
doi: 10.1038/nbt.3149 URL |
[50] |
ZALATAN J G, LEE M E, ALMEIDA R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160:339-350.
doi: 10.1016/j.cell.2014.11.052 URL |
[51] |
ZHANG H, ZHANG J, WEI P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant biotechnology journal, 2014, 12(6):797-807.
doi: 10.1111/pbi.12200 URL |
[52] | 廖嘉明, 包钰韬, 陈媛,等. 基于CRISPR/Cas9系统构建拟南芥EXP A多基因编辑表达载体[J]. 分子植物育种, 2020, 18(17):222-228. |
[53] |
Wang Y P, Cheng X, Shan Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature biotechnology, 2014, 32:947-951.
doi: 10.1038/nbt.2969 URL |
[54] |
ABE F, HAQUE E, HISANO H, et al. Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat[J]. Cell reports, 2019, 28(5):1362-1369.
doi: 10.1016/j.celrep.2019.06.090 URL |
[55] |
BRAATZ J, HARLOFF H J, MASCHER M, et al. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus)[J]. Plant physiology, 2017, 174(2):935-942.
doi: 10.1104/pp.17.00426 URL |
[56] |
OSAKABE Y, OSAKABE K. Genome editing with engineered nucleases in plants[J]. Plant and cell physiology, 2015, 56(3):389-400.
doi: 10.1093/pcp/pcu170 URL |
[57] |
徐鹏, 王宏, 涂燃冉,等. CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学, 2019, 33(4):313-322.
doi: 10.16819/j.1001-7216.2019.9043 |
[58] |
XU R, YANG Y, QIN R, et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Journal of genetics and genomics, 2016, 43(8):529-532.
doi: 10.1016/j.jgg.2016.07.003 URL |
[59] |
汪秉琨, 张慧, 洪汝科,等. CRISPR/Cas9系统编辑水稻Wx基因[J]. 中国水稻科学, 2018, 32(1):35-42.
doi: 10.16819/j.1001-7216.2018.7061 |
[60] |
ZHOU H, HE M, LI J, et al. Development of commercial hermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J]. Scientific reports, 2016, 6:37395.
doi: 10.1038/srep37395 URL |
[61] | 覃玉芬, 廖山岳, 郭新颖,等. 利用CRISPR/Cas9基因编辑系统创制新型水稻温敏雄性核不育系[J]. 分子植物育种:1-27[2021-05-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20210402.1611.016.html. |
[62] |
ZHANG Y, LIANG Z, ZONG Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR /Cas9 DNA or RNA[J]. Nature communications, 2016, 7:12617.
doi: 10.1038/ncomms12617 URL |
[63] |
SVITASHEV S, YOUNG J K, SCHWARTZ C, et al. Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA[J]. Plant physiology, 2015, 169(2):931-945.
doi: 10.1104/pp.15.00793 URL |
[64] |
SHI J R, GAO H, WANG H, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant biotechnology journal, 2017, 15(2):207-243.
doi: 10.1111/pbi.12603 URL |
[65] |
SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature biotechnology, 2013, 31(8):686.
doi: 10.1038/nbt.2650 URL |
[66] |
MIKI D, ZHANG W, ZENG W, et al. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation[J]. Nature communications, 2018, 9(1):1967.
doi: 10.1038/s41467-018-04416-0 URL |
[67] | 璩良, 李华善, 姜运涵,等. CRISPR/Cas9系统的分子机制及其在人类疾病基因治疗中的应用[J]. 遗传, 2015, 37(10):974-982. |
[68] | 殷利眷, 胡斯奇, 郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用[J]. 遗传, 2015, 37(5):412-418. |
[1] | 高忠奎, 蒋菁, 韩柱强, 黄志鹏, 熊发前, 唐秀梅, 吴海宁, 钟瑞春, 刘菁, 唐荣华, 贺梁琼. CRISPR/Cas9系统及其在粮油作物遗传改良中的研究进展[J]. 中国农学通报, 2021, 37(20): 26-34. |
[2] | 秦瑞英,李娟,李浩,杨亚春,杨剑波,魏鹏程. 基因组编辑技术在作物育种中的应用及监管现状[J]. 中国农学通报, 2019, 35(6): 96-100. |
[3] | 陈建华,陈章玉,李雪梅,张承明,杨光宇,张涛,王小龙,孔光辉,王晋. FTIR技术在烟草基因编辑素材病害初级筛选中的应用[J]. 中国农学通报, 2019, 35(20): 92-98. |
[4] | 张建铎,向海英,曾婉俐,张承明,李晶,李雪梅,杨光宇,张涛. 固相萃取离子色谱法快速测定烟草中钾、钠、钙、镁和氨的研究[J]. 中国农学通报, 2019, 35(17): 112-116. |
[5] | 朱海鲸,刘锦旺,李陇平,黄帅,屈雷. MSTN及FGF5基因编辑不改变绒山羊母羊同期发情能力[J]. 中国农学通报, 2018, 34(9): 124-126. |
[6] | 李陇平,杨吉,朱海鲸,黄帅,屈雷. CRISPR/Cas9介导的MSTN/FGF5基因编辑陕北白绒山羊粪便菌群分析[J]. 中国农学通报, 2018, 34(14): 134-139. |
[7] | 赵 欣,胡 军. CRISPR/Cas基因编辑系统及其在植物中的研究进展[J]. 中国农学通报, 2015, 31(12): 187-192. |
[8] | 毕影东 李炜 肖佳雷 李琬 刘明 刘淼 张必弦 林红 来永才. 大豆分子育种现状、挑战与展望[J]. 中国农学通报, 2014, 30(6): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||