中国农学通报 ›› 2015, Vol. 31 ›› Issue (12): 187-192.doi: 10.11924/j.issn.1000-6850.casb14120051
所属专题: 生物技术
赵 欣1,胡 军2
收稿日期:
2014-12-07
修回日期:
2015-01-16
接受日期:
2015-01-23
出版日期:
2015-05-06
发布日期:
2015-05-06
通讯作者:
胡军
Zhao Xin1, Hu Jun2
Received:
2014-12-07
Revised:
2015-01-16
Accepted:
2015-01-23
Online:
2015-05-06
Published:
2015-05-06
摘要: 靶向基因编辑系统是一种研究植物基因功能的工具。其中,CRISPR/Cas基因编辑系统的克隆策略相对简单,成本低廉,因而在生物学界获得了广泛的关注。为了更好地对其在植物中进行研究,笔者介绍了该系统的基本结构特征与作用机理,归纳了在拟南芥、烟草、水稻等植物中对该系统进行的报道,分析了该系统尚需改进的问题如脱靶效应,探讨了多种解决方法,如优化sgRNA序列长度、利用双Cas9切口酶、合成fCas9复合体以及应用RFNs二聚体等,以降低脱靶效应。
赵 欣,胡 军. CRISPR/Cas基因编辑系统及其在植物中的研究进展[J]. 中国农学通报, 2015, 31(12): 187-192.
Zhao Xin and Hu Jun. CRISPR/Cas Gene Editing System and Its Progress in Plants[J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 187-192.
[1] Mahfouz M M, Piatek A, Stewart C N. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives [J]. Plant biotechnology journal,2014,12(8):1006-1014. [2] Lozano-Juste J, Cutler S R. Plant genome engineering in full bloom [J]. Trends in plant science,2014,19(5):284-287. [3] Liu L, Fan X D. CRISPR–Cas system: a powerful tool for genome engineering [J]. Plant molecular biology,2014,85(3):209-218. [4] Nakata A, Amemura M, Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome [J]. Journal of bacteriology,1989,171(6):3553-3556. [5] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology,2005,51(3):653-663. [6] Mojica F J, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J]. Journal of Molecular evolution, 2005,60(2):174-182. [7] Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J]. Microbiology, 2005,151(8):2551-2561. [8] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315 (5819): 1709-1712. [9] Bland C, Ramsey T L, Sabree F, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats [J]. BMC bioinformatics, 2007,8(1):209. [10] Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation [J]. Annual review of biochemistry, 2010,79:213-231. [11] Wei C, Liu J, Yu Z, et al. TALEN or Cas9–rapid, efficient and specific choices for genome modifications [J]. Journal of Genetics and Genomics, 2013,40(6):281-289. [12] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats [J]. Bmc Bioinformatics, 2007,8(1):172. [13] Richter H, Randau L, Plagens A. Exploiting CRISPR/Cas: Interference mechanisms and applications [J]. International journal of molecular sciences, 2013,14(7):14518-14531. [14] Marraffini L A, Sontheimer E J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea [J]. Nature Reviews Genetics, 2010,11(3):181-190. [15] Mojica F, Diez-Villasenor C, Garcia-Martinez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J]. Microbiology, 2009,155(3):733-740. [16] Gasiunas G, Barrangou R, Horvath P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proceedings of the National Academy of Sciences, 2012,10(39): E2579-E2586. [17] Xie K, Zhang J, Yang Y. Genome-Wide Prediction of Highly Specific Guide RNA Spacers for CRISPR–Cas9-Mediated Genome Editing in Model Plants and Major Crops [J]. Molecular plant, 2014,7(5):923-926. [18] Jiang W, Yang B, Weeks D P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations [J]. PloS one, 2014,9(6):e99225. [19] Hyun Y, Kim J, Cho S W, et al. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles [J]. Planta, 2014, doi:10.1007/s00425-014-2180-5. [20] Feng Z, Mao Y, Xu N, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis [J]. Proceedings of the National Academy of Sciences, 2014,111(12):4632-4637. [21] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana [J]. The Plant Journal, 2014,79(2):348-359. [22] Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation [J]. Plant biotechnology journal, 2014,12(6):797-807. [23] Xu R, Li H, Qin R, et al. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice [J]. Rice, 2014,7(1):5. [24] Xie K,Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system [J]. Molecular plant, 2013,6(6):1975-1983. [25] Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice [J]. Nucleic acids research, 2013, doi: 10.1093/nar/gkt780. [26] Shan Q, Wang Y, Li J, et al. Genome editing in rice and wheat using the CRISPR/Cas system [J]. Nature protocols, 2014,9(10):2395-2410. [27] Ga J, Wang G, Ma S. et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum [J]. Plant molecular biology, 2014:1-12. [28] Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease [J]. Nature biotechnology, 2013,31(8):691-693. [29] Liang Z, Zhang K, Chen K, et al. Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System [J]. Journal of Genetics and Genomics, 2014,41(2):63-68. [30] Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA [J]. PLoS One, 2014,9(4):e93806. [31] Brooks C, Nekrasov V, Lippman Z B, et al. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System [J]. Plant physiology, 2014,166(3):1292-1297. [32] Sharma S, Upadhyay S K. Functional Characterization of Expressed Sequence Tags of Bread Wheat (Triticum aestivum) and Analysis of CRISPR Binding Sites for Targeted Genome Editing [J]. American Journal of Bioinformatics Research, 2014,4(1):11-22. [33] Semenova E, Nagornykh M, Pyatnitskiy M, et al. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae [J]. FEMS microbiology letters, 2009,296(1):110-116. [34] Zhou H, Liu B, Weeks D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice [J]. Nucleic acids research, 2015,42(17):10903-10914. [35] Ryan O W, Skerker J M, Maurer M J, et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system [J]. eLife, 2014,3:e03703. [36] Feng Z, Zhang B, Ding W, et al. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell research, 2013,23(10):1229-1232. [37] Upadhyay S K, Sharma S. SSFinder: high throughput CRISPR-Cas target sites prediction tool [J]. BioMed research international, 2014:742482. [38] Güell M, Yang L, Church G M. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA) [J]. Bioinformatics, 2014,30(20):2968-2970. [39] Yan M, Zhou S R, Xue H W. CRISPR Primer Designer: Design primers for knockout & chromosome imaging CRISPR-Cas system [J]. Journal of integrative plant biology, 2014, doi: 10.1111/jipb.12295. [40] O’Connell M R, Oakes B L, Sternberg S H, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9 [J]. Nature, 2014, doi:10.1038/nature13769. [41] Fu Y, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs [J]. Nature biotechnology, 2014,32(3):279-284. [42] Ran F A, Hsu P D, Lin C-Y, et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity [J]. Cell, 2013,155(2):479-480. [43] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification [J]. Nature biotechnology, 2014,32:577-582. [44] Tsai S Q, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing [J]. Nature biotechnology, 2014,32(6):569-576. [45] Ranganathan V, Wahlin K, Maruotti J, et al. Expansion of the CRISPR–Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs [J]. Nature communications, 2014, doi:10.1038/ncomms5516. [46] Gogleva A A, Gelfand M S, Artamonova I I. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs [J]. BMC genomics, 2014,15(1):202. [47] Small I, Puchta H. Emerging tools for synthetic biology in plants [J]. The Plant Journal, 2014,78(5):725-726. [48] Kumar V, Jain M. The CRISPR–Cas system for plant genome editing: advances and opportunities [J]. Journal of Experimental Botany, 2014, doi: 10.1093/jxb/eru429. [49] Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU [J]. The Plant Journal, 2014,78(5):742-752. [50] Webber P. Does CRISPR-Cas open new possibilities for patents or present a moral maze? [J]. Nature biotechnology, 2014,32(4):331-333. |
[1] | 王因花, 任飞, 李庆华, 翟国锋, 臧真荣, 吴德军, 燕丽萍, 姚俊修. 接骨木嫩枝扦插繁育技术研究[J]. 中国农学通报, 2022, 38(10): 26-31. |
[2] | 蓝金宣, 梁文汇, 黄晓露, 杨卓颖, 李宝财, 马锦林. 油桐扦插及其不定根形成的解剖观察[J]. 中国农学通报, 2021, 37(19): 42-46. |
[3] | 姜玉东, 熊佑清, 张军民. 不同生根粉浓度对5种木本植物插穗萌发和生根的影响[J]. 中国农学通报, 2021, 37(14): 52-58. |
[4] | 任飞, 吴德军, 李庆华, 孔雨光, 李萍, 刘翠兰, 刘国利, 王因花, 燕丽萍. 黑松嫩枝扦插繁育技术研究[J]. 中国农学通报, 2021, 37(1): 27-31. |
[5] | 燕丽萍, 王因花, 任飞, 束德峰, 刘翠兰, 李庆华, 臧真荣, 吴德军. 元宝枫嫩枝扦插快速繁育技术研究[J]. 中国农学通报, 2020, 36(19): 55-61. |
[6] | 蓝金宣,黄晓露,李开祥,梁文汇,赵志珩,赵海鹄. 细子龙扦插技术研究[J]. 中国农学通报, 2019, 35(7): 54-57. |
[7] | 蔡艳飞,宋 杰,李世峰,李树发. IBA浓度和使用方法对高山杜鹃‘Nova Zembla’扦插生根的影响[J]. 中国农学通报, 2018, 34(14): 75-80. |
[8] | 贾志远,有祥亮,何小丽,崔心红,唐罗忠,朱义. 沼泽小叶桦扦插技术研究[J]. 中国农学通报, 2017, 33(34): 69-75. |
[9] | 刘芳,袁有美,陈建荣,朱天彧,邝鼎,唐映红. 迎春花试管培养技术的研究[J]. 中国农学通报, 2017, 33(26): 20-24. |
[10] | 崔中翌,刘 芳,袁有美,唐映红,陈建荣. 南美天胡荽无菌快速繁殖技术研究[J]. 中国农学通报, 2016, 32(28): 105-109. |
[11] | 刘肖肖 董元华 刘同电 苓建强 兰洲 郭旭琴. 不同基质和生根剂对彩桂扦插繁殖的影响[J]. 中国农学通报, 2013, 29(31): 58-63. |
[12] | 王鹏 张振宇 马玲玲 李林芳 汪庆 李亚. 南方红豆杉嫩枝扦插技术研究[J]. 中国农学通报, 2013, 29(25): 49-54. |
[13] | 张浪 姜殿强 翁春雨 云勇. 海南黎药裸花紫株扦插育苗技术研究[J]. 中国农学通报, 2013, 29(13): 197-200. |
[14] | 张静翅 莫权辉 李洁维 叶开玉 蒋桥生 龚弘娟. 4种基质对濒危物种——金花猕猴桃扦插苗根系和叶片性状的影响[J]. 中国农学通报, 2010, 26(21): 213-217. |
[15] | 周修任1,刘荷芬1,刘桂安2,洪小江3. ABT处理和插穗长度对栝楼扦插苗质量的影响[J]. 中国农学通报, 2010, 26(10): 160-163. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||