欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (17): 62-71.doi: 10.11924/j.issn.1000-6850.casb2024-0790

• 资源·环境·生态·土壤·气象 • 上一篇    下一篇

生物修复重金属污染的研究进展:基于微生物诱导碳酸盐沉淀技术

王楷予(), 王兆轩, 敖国旭, 葛菁萍, 凌宏志(), 孙珊珊()   

  1. 黑龙江大学生命科学学院/农业微生物技术教育部工程研究中心/黑龙江省寒区植物基因与生物发酵重点实验室/黑龙江省普通高校微生物重点实验室,哈尔滨 150080
  • 收稿日期:2024-12-31 修回日期:2025-04-14 出版日期:2025-06-15 发布日期:2025-06-15
  • 通讯作者:
    凌宏志,男,1979年出生,教授,博士,主要研究方向:微生物资源挖掘与利用。E-mail:
    孙珊珊,女,1990年出生,副教授,博士,主要研究方向:微生物次生代谢产物与生理。E-mail:
  • 作者简介:

    王楷予,女,2002年出生,硕士研究生,主要研究方向:微生物资源挖掘与利用。E-mail:

  • 基金资助:
    黑龙江省生态环境厅项目“土壤污染物PET降解菌的协同代谢及修复效果初探”(HST2022TR005); 黑龙江省省属高等学校基本科研业务费科研项目“聚乙烯微塑料对污染物雌二醇命运的影响及土壤微生物群落的响应机制”(2024-KYYWF-0716); 黑龙江省省属高等学校基本科研业务费重点科研项目“探究零价铁及微塑料对有机固废厌氧消化的不同机制”(2024-KYYWF-0020)

Progress in Bioremediation of Heavy Metal Contamination: Based on Microbially-induced Carbonate Precipitation Technology

WANG Kaiyu(), WANG Zhaoxuan, AO Guoxu, GE Jingping, LING Hongzhi(), SUN Shanshan()   

  1. School of Life Sciences, Heilongjiang University/Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/Key Laboratory of Microbiology, College of Heilongjiang Province, Harbin 150080
  • Received:2024-12-31 Revised:2025-04-14 Published:2025-06-15 Online:2025-06-15

摘要:

为了有效解决水体和土壤中重金属污染加剧的问题,近年来,基于生物矿化的微生物诱导碳酸盐沉淀(MICP)技术用于修复污染水体和土壤中重金属的污染受到广泛关注。与传统的去除方法相比,MICP技术通过微生物诱导碳酸钙沉淀,经济有效且具有良好的稳定性,在固定重金属的同时改善污染介质的质量,有着良好的应用前景。本研究综述了MICP的最新研究进展及其在环境工程中的应用,涉及矿物沉淀机制、代谢途径、影响因素和在重金属修复中的应用等方面,并对其规模化应用前景进行了展望,提出3点建议:一是对MICP过程的内、外部因素进行优化,确定微生物生长和矿物生成的最佳工艺条件;二是对MICP尿素水解过程中产生的NH4+进一步完善处理方法,减轻对环境造成的负面影响;三是优化工艺和自动化步骤来降低MICP技术修复成本,实现MICP的规模化应用。研究以期为MICP技术在环境修复和生物材料合成等方面提供理论基础。

关键词: 重金属污染, 重金属离子, 生物修复, 微生物诱导碳酸盐沉淀, 尿素水解, 脲酶

Abstract:

To effectively address the escalating heavy metal contamination in water bodies and soils, microbial-induced carbonate precipitation (MICP) technology, based on biomineralization, has recently garnered significant attention for remediating heavy metal pollution. Compared to conventional removal methods, MICP aims to induce calcium carbonate precipitation through microbial activity, offering cost-effectiveness and robust stability. This approach not only immobilizes heavy metals but also enhances the quality of contaminated matrices, demonstrating promising application prospects. This paper reviews recent advances in MICP and its applications in environmental engineering, encompassing mineral precipitation mechanisms, metabolic pathways, influencing factors, and progress in heavy metal remediation. Furthermore, it discusses the potential for large-scale implementation and three suggestions are put forward. Firstly, the internal and external factors of MICP process should be optimized to determine the optimal process conditions for microbial growth and mineral formation; the second is to further improve the treatment method of NH4+ produced in the urea hydrolysis process of MICP to reduce the negative impact on the environment; the third is to optimize the process and automation steps to reduce the cost of MICP technology and realize the large-scale application of MICP. The research is expected to provide theoretical insights to advance MICP technology in environmental restoration and biomaterial synthesis.

Key words: heavy metal pollution, heavy metal ion, bioremediation, microbial-induced carbonate precipitation, urea hydrolysis, urease