中国农学通报 ›› 2022, Vol. 38 ›› Issue (12): 131-137.doi: 10.11924/j.issn.1000-6850.casb2021-0548
魏语宁1,2,3(), 刘春光1,2,3, 付海燕1,2,3,4(
), 吴桐1,2,3, 宋福强1,2,3, 马玉堃1,2,3, 杨峰山1,2,3(
)
收稿日期:
2021-05-23
修回日期:
2021-07-23
出版日期:
2022-04-25
发布日期:
2022-05-18
通讯作者:
付海燕,杨峰山
作者简介:
魏语宁,女,1997年出生,内蒙古赤峰人,研究生,主要从事农业有机面源污染与生态修复研究。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院,E-mail: 基金资助:
WEI Yuning1,2,3(), LIU Chunguang1,2,3, FU Haiyan1,2,3,4(
), WU Tong1,2,3, SONG Fuqiang1,2,3, MA Yukun1,2,3, YANG Fengshan1,2,3(
)
Received:
2021-05-23
Revised:
2021-07-23
Online:
2022-04-25
Published:
2022-05-18
Contact:
FU Haiyan,YANG Fengshan
摘要:
有机磷类农药是目前化学防治常用种类之一,过量施用导致环境污染、农产品质量安全等问题日趋严重,国内外各学科领域科研人员也在积极探索该类农药污染的修复治理方法。本文在总结有机磷类农药应用现状及微生物降解机制基础上,详细汇总了有机磷类农药降解微生物种类,总结了功能微生物对有机磷类农药的降解谱,并展望微生物修复技术在农药修复应用前景,以期为该类研究工作提供理论依据。
中图分类号:
魏语宁, 刘春光, 付海燕, 吴桐, 宋福强, 马玉堃, 杨峰山. 有机磷类农药微生物修复研究进展[J]. 中国农学通报, 2022, 38(12): 131-137.
WEI Yuning, LIU Chunguang, FU Haiyan, WU Tong, SONG Fuqiang, MA Yukun, YANG Fengshan. Advance in Microbial Remediation of Organophosphorus Pesticide Pollution[J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 131-137.
微生物菌属 | 微生物菌种 | 有机磷类农药降解谱 | ||||
---|---|---|---|---|---|---|
细菌 | 假单胞菌属(Pseudomonas sp.) | 施氏假单胞菌(Pseudomonas stutzeri)[ | 甲胺磷、乐果、氧化乐果、毒死蜱、敌敌畏、敌百虫 | |||
铜绿假单胞菌(Pseudomonas aeruginosa)[ | 甲胺磷、乐果、甲基对硫磷、久效磷、丙溴磷 | |||||
门多萨假单胞菌(Pseudomonas mendocina)[ | 甲胺磷 | |||||
沼泽红假单胞菌(Rhodopesudomonas pLaustris)[ | 甲胺磷 | |||||
产碱假单胞菌(Pseudomonas alcaligenes)[ | 乐果 | |||||
恶臭假单胞菌(Pseudomonas putida)[ | 毒死蜱、甲基对硫磷、丙线磷、草甘膦 | |||||
菊苣假单胞菌(Pseudomonas chicory)[ | 乐果 | |||||
嗜中温假单胞菌(Pseudomonas thermophilus)[ | 甲胺磷 | |||||
嗜松香假单胞菌(Pseudomonas abietaniphila)[ | 氧化乐果 | |||||
荧光假单胞菌(Pseudomonas fluorescens)[ | 敌敌畏 | |||||
芽孢杆菌属(Bacillus sp.) | 巨大芽孢杆菌(Bacillus megaterium)[ | 甲胺磷、氧化乐果、甲基对硫磷、久效磷 | ||||
地衣芽孢杆菌(Bacillus licheniformis)[ | 甲胺磷、对硫磷、甲基对硫磷、敌敌畏 | |||||
短芽孢杆菌(Bacillus brevis)[ | 乐果 | |||||
蜡样芽孢杆菌(Bacillus cereus)[ | 甲胺磷、毒死蜱、三唑磷 | |||||
球形芽孢杆菌(Bacillus sphaericus)[ | 氧化乐果 | |||||
枯草芽孢杆菌(Bacillus subtilis)[ | 甲基对硫磷 | |||||
肠杆菌属(Enterobacter sp.) | 阴沟肠杆菌(Enterobacter cloacae)[ | 甲胺磷、乐果、敌敌畏、敌百虫 | ||||
Ludwigii肠杆菌(Enterobacter ludwigii)[ | 毒死蜱、甲基对硫磷 | |||||
黄杆菌属(Flavobacterium sp.) | 大比目鱼黄杆菌(Flavobacterium from halibut)[ | 甲基对硫磷 | ||||
葡萄球菌属(Staphylococcus sp.) | 葡萄球菌MAPD-4 (Staphylococcus MAPD-4)[ | 甲胺磷 | ||||
产碱菌属(Alcaligens sp.) | 粪产碱菌(Alcaligenes faecalis)[ | 乐果 | ||||
伯克霍尔德氏菌属 (Burkholderia sp.) | 伯克霍尔德氏菌nov.MP-1T (Burkholderia jiangsuensis nov.MP-1T)[ | 甲胺磷、甲基对硫磷、敌敌畏、马拉硫磷、二嗪磷、 辛硫磷、乙基对硫磷 | ||||
洋葱伯克霍尔德菌(Burkholderia cepacia)[ | 毒死蜱 | |||||
不动杆菌属(Acinetobacter sp.) | 醋酸钙不动杆菌(Acinetobacter)[ | 乐果 | ||||
孪生球菌属(Gemella sp.) | 麻疹孪生球菌(Gemella morbillorum)[ | 乐果 | ||||
寡养单胞菌属 (Stenotrophomonas sp.) | 嗜麦芽寡营养单胞菌 (Stenotrophomonas maltophilia)[ | 乐果、氧化乐果、毒死蜱、甲基对硫磷、敌敌畏 | ||||
微嗜酸寡养单胞菌 (Stenotrophomonas acidaminiphila)[ | 毒死蜱 | |||||
节杆菌属(Arthrobacter sp.) | 球形节杆菌(Arthrobacter globiformis)[ 黑蓝节杆菌(Arthrobacter atrocyaneus)[ | 氧化乐果 久效磷 | ||||
短波单胞菌属 (Brevundimonas sp.) | 短波单胞菌A1A18 (Brevundimonas A1A18)[ | 氧化乐果、毒死蜱 | ||||
红球菌属(Rhodococcus sp.) | 玫瑰红红球菌(Rhodococcus rhodochrous)[ | 毒死蜱 | ||||
气单胞菌属(Aeromonas sp.) | 嗜水气单胞菌(Aeromonas hydrophila)[ | 毒死蜱 | ||||
极毛杆菌属(Polaricobacter sp.) | 固氮极毛杆菌属(Polaricobacter Nitrogen fixator)[ | 对硫磷 | ||||
邻单胞菌属(Plesiomonas sp.) | 邻单胞菌SA-8 (Plesiomonas SA-8)[ | 甲基对硫磷 | ||||
玫瑰单胞菌属(Roseomonas sp.) | 玫瑰单胞菌JS018 (Roseomonas JS018)[ | 甲基对硫磷、敌敌畏 | ||||
苍白杆菌属(Ochrobacterum sp.) | 苍白杆菌Yw18 (Ochrobacterum Yw18)[ | 甲基对硫磷 | ||||
篮状菌属(Talaromyces sp.) | 黄色篮状菌(Talaromyces yellow)[ | 甲基对硫磷 | ||||
土壤杆菌属(Agrobacterium sp.) | 放射形土壤杆菌(Agrobacterium radiobacter)[ | 马拉硫磷、蝇毒磷 | ||||
真菌 | 木霉属(Trichoderma) | 绿色木霉(Trichoderma viride)[ | 马拉硫磷 | |||
青霉属(Penicillium) | 草酸青霉(Penicillium oxalicum)[ | 甲胺磷、氧化乐果、辛硫磷、草甘膦 | ||||
曲霉属(Aspergillus) | 黑曲霉(Aspergillus niger)[ | 甲胺磷、乐果 | ||||
黄曲霉(Aspergillus flavus)[ | 乐果、马拉硫磷 | |||||
聚多曲霉(Aspergillus sydowii)[ | 乐果、马拉硫磷 | |||||
米曲霉(Aspergillus oryzae)[ | 甲基对硫磷、马拉硫磷 | |||||
酵母属(Saccharomyces) | 鲁氏酵母(Saccharomyces rouxii)[ | 甲胺磷 | ||||
瓶形酵母菌(Pityrasparum)[ | 甲胺磷 | |||||
红酵母菌属(Rhodotorula sp.) | 胶红酵母菌(Rhodotorula mucilaginosa)[ | 氧化乐果、毒死蜱、敌百虫 | ||||
假丝酵母属(Candida) | 布朗克假丝酵母(Candida blankii)[ | 甲基对硫磷 | ||||
藻类 | 小球绿藻属(Chlorolla)[ | 对硫磷、甲拌磷 | ||||
微藻(Microalgae)[ | 甲基对硫磷 |
微生物菌属 | 微生物菌种 | 有机磷类农药降解谱 | ||||
---|---|---|---|---|---|---|
细菌 | 假单胞菌属(Pseudomonas sp.) | 施氏假单胞菌(Pseudomonas stutzeri)[ | 甲胺磷、乐果、氧化乐果、毒死蜱、敌敌畏、敌百虫 | |||
铜绿假单胞菌(Pseudomonas aeruginosa)[ | 甲胺磷、乐果、甲基对硫磷、久效磷、丙溴磷 | |||||
门多萨假单胞菌(Pseudomonas mendocina)[ | 甲胺磷 | |||||
沼泽红假单胞菌(Rhodopesudomonas pLaustris)[ | 甲胺磷 | |||||
产碱假单胞菌(Pseudomonas alcaligenes)[ | 乐果 | |||||
恶臭假单胞菌(Pseudomonas putida)[ | 毒死蜱、甲基对硫磷、丙线磷、草甘膦 | |||||
菊苣假单胞菌(Pseudomonas chicory)[ | 乐果 | |||||
嗜中温假单胞菌(Pseudomonas thermophilus)[ | 甲胺磷 | |||||
嗜松香假单胞菌(Pseudomonas abietaniphila)[ | 氧化乐果 | |||||
荧光假单胞菌(Pseudomonas fluorescens)[ | 敌敌畏 | |||||
芽孢杆菌属(Bacillus sp.) | 巨大芽孢杆菌(Bacillus megaterium)[ | 甲胺磷、氧化乐果、甲基对硫磷、久效磷 | ||||
地衣芽孢杆菌(Bacillus licheniformis)[ | 甲胺磷、对硫磷、甲基对硫磷、敌敌畏 | |||||
短芽孢杆菌(Bacillus brevis)[ | 乐果 | |||||
蜡样芽孢杆菌(Bacillus cereus)[ | 甲胺磷、毒死蜱、三唑磷 | |||||
球形芽孢杆菌(Bacillus sphaericus)[ | 氧化乐果 | |||||
枯草芽孢杆菌(Bacillus subtilis)[ | 甲基对硫磷 | |||||
肠杆菌属(Enterobacter sp.) | 阴沟肠杆菌(Enterobacter cloacae)[ | 甲胺磷、乐果、敌敌畏、敌百虫 | ||||
Ludwigii肠杆菌(Enterobacter ludwigii)[ | 毒死蜱、甲基对硫磷 | |||||
黄杆菌属(Flavobacterium sp.) | 大比目鱼黄杆菌(Flavobacterium from halibut)[ | 甲基对硫磷 | ||||
葡萄球菌属(Staphylococcus sp.) | 葡萄球菌MAPD-4 (Staphylococcus MAPD-4)[ | 甲胺磷 | ||||
产碱菌属(Alcaligens sp.) | 粪产碱菌(Alcaligenes faecalis)[ | 乐果 | ||||
伯克霍尔德氏菌属 (Burkholderia sp.) | 伯克霍尔德氏菌nov.MP-1T (Burkholderia jiangsuensis nov.MP-1T)[ | 甲胺磷、甲基对硫磷、敌敌畏、马拉硫磷、二嗪磷、 辛硫磷、乙基对硫磷 | ||||
洋葱伯克霍尔德菌(Burkholderia cepacia)[ | 毒死蜱 | |||||
不动杆菌属(Acinetobacter sp.) | 醋酸钙不动杆菌(Acinetobacter)[ | 乐果 | ||||
孪生球菌属(Gemella sp.) | 麻疹孪生球菌(Gemella morbillorum)[ | 乐果 | ||||
寡养单胞菌属 (Stenotrophomonas sp.) | 嗜麦芽寡营养单胞菌 (Stenotrophomonas maltophilia)[ | 乐果、氧化乐果、毒死蜱、甲基对硫磷、敌敌畏 | ||||
微嗜酸寡养单胞菌 (Stenotrophomonas acidaminiphila)[ | 毒死蜱 | |||||
节杆菌属(Arthrobacter sp.) | 球形节杆菌(Arthrobacter globiformis)[ 黑蓝节杆菌(Arthrobacter atrocyaneus)[ | 氧化乐果 久效磷 | ||||
短波单胞菌属 (Brevundimonas sp.) | 短波单胞菌A1A18 (Brevundimonas A1A18)[ | 氧化乐果、毒死蜱 | ||||
红球菌属(Rhodococcus sp.) | 玫瑰红红球菌(Rhodococcus rhodochrous)[ | 毒死蜱 | ||||
气单胞菌属(Aeromonas sp.) | 嗜水气单胞菌(Aeromonas hydrophila)[ | 毒死蜱 | ||||
极毛杆菌属(Polaricobacter sp.) | 固氮极毛杆菌属(Polaricobacter Nitrogen fixator)[ | 对硫磷 | ||||
邻单胞菌属(Plesiomonas sp.) | 邻单胞菌SA-8 (Plesiomonas SA-8)[ | 甲基对硫磷 | ||||
玫瑰单胞菌属(Roseomonas sp.) | 玫瑰单胞菌JS018 (Roseomonas JS018)[ | 甲基对硫磷、敌敌畏 | ||||
苍白杆菌属(Ochrobacterum sp.) | 苍白杆菌Yw18 (Ochrobacterum Yw18)[ | 甲基对硫磷 | ||||
篮状菌属(Talaromyces sp.) | 黄色篮状菌(Talaromyces yellow)[ | 甲基对硫磷 | ||||
土壤杆菌属(Agrobacterium sp.) | 放射形土壤杆菌(Agrobacterium radiobacter)[ | 马拉硫磷、蝇毒磷 | ||||
真菌 | 木霉属(Trichoderma) | 绿色木霉(Trichoderma viride)[ | 马拉硫磷 | |||
青霉属(Penicillium) | 草酸青霉(Penicillium oxalicum)[ | 甲胺磷、氧化乐果、辛硫磷、草甘膦 | ||||
曲霉属(Aspergillus) | 黑曲霉(Aspergillus niger)[ | 甲胺磷、乐果 | ||||
黄曲霉(Aspergillus flavus)[ | 乐果、马拉硫磷 | |||||
聚多曲霉(Aspergillus sydowii)[ | 乐果、马拉硫磷 | |||||
米曲霉(Aspergillus oryzae)[ | 甲基对硫磷、马拉硫磷 | |||||
酵母属(Saccharomyces) | 鲁氏酵母(Saccharomyces rouxii)[ | 甲胺磷 | ||||
瓶形酵母菌(Pityrasparum)[ | 甲胺磷 | |||||
红酵母菌属(Rhodotorula sp.) | 胶红酵母菌(Rhodotorula mucilaginosa)[ | 氧化乐果、毒死蜱、敌百虫 | ||||
假丝酵母属(Candida) | 布朗克假丝酵母(Candida blankii)[ | 甲基对硫磷 | ||||
藻类 | 小球绿藻属(Chlorolla)[ | 对硫磷、甲拌磷 | ||||
微藻(Microalgae)[ | 甲基对硫磷 |
[1] | CHEN D, WU S R, XUE H A, et al. Stereoselective catabolism of compounds by microorganisms: catabolic pathway, molecular mechanism and potential application[J]. International biodeterioration & biodegradation, 2020,146:104822-104834. |
[2] |
NURAN Y, YAKUP S V. Effects of processing and storage on pesticide residues in foods[J]. Critical reviews in food science and nutrition, 2020,60(21):3622-3641.
doi: 10.1080/10408398.2019.1702501 URL |
[3] | ZARANYIKA M F, MATIMATI E, MUSHONGA P. Degradation kinetics of DDT in tropical soils:A proposed multi-phase zero order kinetic model that takes into account evaporation, hydrolysis, photolysis, microbial degradation and adsorption by soil particulates[J]. Scientific African, 2020,9:467-479. |
[4] |
ZHANG Y X, XU Z X, CHEN Z J, et al. Simultaneous degradation of triazophos, methamidophos and carbofuran pesticides in wastewater using an Enterobacter bacterial bioreactor and analysis of toxicity and biosafety[J]. Chemosphere, 2020,261:128054-1228062.
doi: 10.1016/j.chemosphere.2020.128054 URL |
[5] |
MUHAMMAD S, MUHAMMAD U, ABDUL W, et al. Terrestrial ecosystem functioning affected by agricultural management systems: A review[J]. Soil and tillage research, 2020,196:104464-104474.
doi: 10.1016/j.still.2019.104464 URL |
[6] |
SANTILLAN J Y, ROJAS N L, GHIRINGHELLI P D, et al. Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water[J]. Bioresource technology, 2020,317:124003-124045.
doi: 10.1016/j.biortech.2020.124003 URL |
[7] |
SHARDENDU K, GARIMA K, MOHD A D, et al. Microbial degradation of organophosphate pesticides: a review[J]. Pedosphere, 2018,28(2):190-208.
doi: 10.1016/S1002-0160(18)60017-7 URL |
[8] |
SHALINI V, DHARAM S, SUBHANKAR C. Biodegradation of organophosphorus pesticide chlorpyrifos by Sphingobacterium sp. C1B, a psychrotolerant bacterium isolated from apple orchard in Himachal Pradesh of India[J]. Extremophiles, 2020,24:897-908.
doi: 10.1007/s00792-020-01203-y URL |
[9] |
SARLAK Z, KHOSRAVI-DARANI K, ROUHI M, et al. Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics[J]. Food control, 2021,126:108006-108018.
doi: 10.1016/j.foodcont.2021.108006 URL |
[10] | YE X L, DONG F, LEI X Y. Microbial resources and ecology microbial degradation of pesticides[J]. Natural resources conservation and research, 2018,1(1):22-28. |
[11] | DECHESNE A, BADAWI N, AAMAND J, et al. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications[J]. Frontiers in microbiology, 2014,5:667-680. |
[12] |
ZHEN M N, SONG B R, LIU X M, et al. Biocharmediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide contaminated soils[J]. Chinese journal of chemical engineering, 2018,26(12):2592-2600.
doi: 10.1016/j.cjche.2018.01.028 URL |
[13] |
SINGH S, KUMAR V, GILL J P K, et al. Herbicide glyphosate: toxicity and microbial degradation[J]. International journal of environmental research and public health, 2020,17(20):7519-7536.
doi: 10.3390/ijerph17207519 URL |
[14] | ADOLFO M, ESTEBAN F D. A review on pesticide removal through different processes[J]. Environmental science and pollution research, 2018,5(3):2051-2064. |
[15] |
GHAFOOR A, MOEYS J, STENSTRÖM J, et al. Modeling spatial variation in microbial degradation of pesticides in soil[J]. Environmental science & technology, 2011,45(15):6411-6419.
doi: 10.1021/es2012353 URL |
[16] |
SOARES P R S, BIROLLI W G, FERREIRA I M, et al. Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds[J]. Marine pollution bulletin, 2021,166:112185-112196.
doi: 10.1016/j.marpolbul.2021.112185 URL |
[17] |
ZHAO S M, XU W, ZHANG W L, et al. In depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides[J]. Bioresource technology, 2021,323:124641-124650.
doi: 10.1016/j.biortech.2020.124641 URL |
[18] |
LIN Z Q, PANG S M, ZHANG W P, et al. Degradation of acephate and its intermediate methamidophos: mechanisms and biochemical pathways[J]. Frontiers in microbiology, 2020,11:2045-2062.
doi: 10.3389/fmicb.2020.02045 URL |
[19] |
JAIN M, YADAV P, JOSHI A, et al. Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors[J]. Critical reviews in toxicology, 2019,49(5):387-410.
doi: 10.1080/10408444.2019.1626800 URL |
[20] |
MENGUAL C, SCHOEBITZ M, AZCON R, et al. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions[J]. Journal of environmental management, 2014,134:1-7.
doi: 10.1016/j.jenvman.2014.01.008 URL |
[21] |
ZHANG X, LI X N, ZHANG Y, et al. Integrated control of potato late blight with a combination of the photosynthetic bacterium Rhodopseudomonas palustris strain GJ-22 and fungicides[J]. BioControl, 2020,65:635-645.
doi: 10.1007/s10526-020-10026-x URL |
[22] |
ZHANG H J, WANG L, LI Y, et al. Background nutrients and bacterial community evolution determine C-13-17 beta-estradiol mineralization in lake sediment microcosms[J]. Science of the total environment, 2019,651:2304-2311.
doi: 10.1016/j.scitotenv.2018.10.098 URL |
[23] | 柏文琴, 何凤琴, 邱星辉. 有机磷类农药生物降解研究进展[J]. 应用与环境生物学报, 2004,10(5):675-680. |
[24] | KRZYZANOWSKA D M, POTRYKUS M, GOLANOWSKA M, et al. Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various pectobacterium and Dickeya spp.strains[J]. Journal of plant pathology, 2012,94(2):367-378. |
[25] | 王晓洁, 王晓雅, 李晓宇, 等. 微生物抗菌、降解有机磷类农药研究[J]. 农业开发与装备, 2020(6):58-59. |
[26] |
JIANG B, ZHANG N N, XING Y, et al. Microbial degradation of organophosphorus pesticides:novel degraders, kinetics, functional genes, and genotoxicity assessment[J]. Environmental science and pollution research, 2019,26(21):21668-21681.
doi: 10.1007/s11356-019-05135-9 URL |
[27] | FRIEDERIKE H, FRERK F, DETLEF S, et al. Analysis of organophosphate pesticides in surface water-Comparison of method optimization approaches[J]. Journal of chemometrics, 2020,34(5):e3220-e3232. |
[28] |
XIANG X Z, WANG Y L, ZHANG X W, et al. Multifiber solid-phase microextraction using different molecularly imprinted coatings for simultaneous selective extraction and sensitive determination of organophosphorus pesticides[J]. Journal of separation science, 2020,43(4):756-765.
doi: 10.1002/jssc.201900994 URL |
[29] |
WAN L, WU Y X, DING H J, et al. Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii[J]. Journal of agricultural and food chemistry, 2020,68(6):1645-1653.
doi: 10.1021/acs.jafc.9b05765 URL |
[30] |
MOHD A D, GARIMA K, JUAN F V. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review[J]. Journal of environmental management, 2019,239:124-136.
doi: 10.1016/j.jenvman.2019.03.048 URL |
[31] |
COLLIMORE W A, BENT G. A newly modified QuEChERS method for the analysis of organochlorine and organophosphate pesticide residues in fruits and vegetables[J]. Environmental monitoring and assessment, 2020,192(2):128-141.
doi: 10.1007/s10661-020-8072-1 URL |
[32] |
LU C, YANG Z M, LIU J, et al. Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501[J]. Chemosphere, 2020,256:127098-127148.
doi: 10.1016/j.chemosphere.2020.127098 URL |
[33] | ELIZABETH A. J, CARL K. W. Safety levels for organophosphate pesticide residues on fruits, vegetables, and nuts[J]. International journal of food contamination, 2019,6(1):76-83. |
[34] |
FANG W Y, YI X L, FA Z R, et al. Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in silico[J]. Food and chemical toxicology, 2019,133:110759-110772.
doi: 10.1016/j.fct.2019.110759 URL |
[35] |
WANG L, WEN Y, GUO X Q, et al. Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway[J]. Biodegradation, 2010,21(4):513-523.
doi: 10.1007/s10532-009-9320-9 URL |
[36] |
LIU T, XU S R, LU S Y, et al. A review on removal of organophosphorus pesticides in constructed wetland: performance, mechanism and influencing factors[J]. Science of the total environment, 2019,651:2247-2268.
doi: 10.1016/j.scitotenv.2018.10.087 URL |
[37] |
CHISHTI Z, AHMAD Z, ZHANG X Z, et al. Optimization of biotic and abiotic factors liable for biodegradation of chlorpyrifos and their modeling using neural network approaches[J]. Applied soil ecology, 2021,166:103990-104001.
doi: 10.1016/j.apsoil.2021.103990 URL |
[38] |
YADAV S, KHAN M. A, SHARMA R, et al. Potential of formulated Dyadobacter jiangsuensis strain 12851 for enhanced bioremediation of chlorpyrifos contaminated soil[J]. Ecotoxicology and environmental safety, 2021,213:112039-12045.
doi: 10.1016/j.ecoenv.2021.112039 URL |
[39] |
ASMA B S, HANENE C, PIERLUIGI C, et al. Environmental fate of two organophosphorus insecticides in soil microcosms under mediterranean conditions and their effect on soil microbial communities[J]. Soil and sediment contamination, 2019,28(3):285-303.
doi: 10.1080/15320383.2018.1564733 URL |
[40] |
MONU J, VIKAS J, KOUSIK M, et al. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia[J]. Ecotoxicology and environmental safety, 2018,159:310-316.
doi: 10.1016/j.ecoenv.2018.04.063 URL |
[41] |
UNIYAL S, SHARMA R K, KONDAKAL V. New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium:process optimization using general factorial experimental design[J]. Ecotoxicology and environmental safety, 2021,209:111799-111808.
doi: 10.1016/j.ecoenv.2020.111799 URL |
[42] |
ASWATHI, PANDEY A, MADHAVAN A, et al. Chlorpyrifos induced proteome remodelling of Pseudomonas nitroreducens AR-3 potentially aid efficient degradation of the pesticide[J]. Environmental technology and innovation, 2021,21:101307-101316.
doi: 10.1016/j.eti.2020.101307 URL |
[43] |
VISCHETTI C, MONACI E, CASUCCI C, et al. Adsorption and degradation of three pesticides in a vineyard soil and in an crganic biomix[J]. Environments, 2020,7(12):113-121.
doi: 10.3390/environments7120113 URL |
[44] |
SUN J N, YUAN X, LI Y Q, et al. The pathway of 2,2-dichlorovinyl dimethyl phosphate (DDVP) degradation by Trichoderma atroviride strain T23 and characterization of a paraoxonase-like enzyme[J]. Applied microbiology and biotechnology, 2019,103(21-22):8947-8962.
doi: 10.1007/s00253-019-10136-2 URL |
[45] |
MENG D, ZHANG L Y, MENG J, et al. Evaluation of the strain Bacillus amyloliquefaciens YP6 in phoxim degradation via transcriptomic data and product analysis[J]. Molecules, 2019,24(21):3997-4010.
doi: 10.3390/molecules24213997 URL |
[46] |
PAN L L, SUN J T, LI Z H, et al. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment[J]. Environmental science and pollution research, 2018,25(1):4-11.
doi: 10.1007/s11356-016-7664-3 URL |
[47] |
LI C K, MA Y Z, MI Z H, et al. Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation[J]. Frontiers in microbiology, 2018,9:2048-2060.
doi: 10.3389/fmicb.2018.02048 URL |
[48] |
SANTILLAN J Y, MUZLERA A, MOLINA M, et al. Microbial degradation of organophosphorus pesticides using whole cells and enzyme extracts[J]. Biodegradation, 2020,31(4-6):423-433.
doi: 10.1007/s10532-020-09918-7 URL |
[49] |
MARIUSZ C, AGNIESZKA M, ZOfia P. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review[J]. Chemosphere, 2017,172:52-71.
doi: 10.1016/j.chemosphere.2016.12.129 URL |
[50] | GINA M H, NATALIA A Á, LEONARDO A R. Bioremediation of organophosphates by fungi and bacteria in agricultural soils: a systematic review[J]. Corpoica cienc tecnol agropecuaria, mosquera (Colombia), 2017,18(1):138-159. |
[51] | JI X Y, WANG Q, ZHANG W D, et al. Research advances in organophosphorus pesticide degradation: a review[J]. Fresenius environmental bulletin, 2016,25(7):2292-2297. |
[52] |
WANG J W, ZHANG C X, LIAO X P, et al. Influence of surface-water irrigation on the distribution of organophosphorus pesticides in soil-water systems, Jianghan Plain, central China[J]. Journal of environmental management, 2021,281:111874-111881.
doi: 10.1016/j.jenvman.2020.111874 URL |
[53] |
MWEVURA H, KYLIN H, VOGT T, et al. Dynamics of organochlorine and organophosphate pesticide residues in soil, water, and sediment from the Rufiji River Delta, Tanzania[J]. Regional studies in marine science, 2020,41:101607-101615.
doi: 10.1016/j.rsma.2020.101607 URL |
[54] | RIIKKA R, CHRISTIAN N. A. Soil Uptake of Volatile Organic Compounds: Ubiquitous and Underestimated?[J]. Journal of geophysical research: biogeosciences, 2020,125(6):5773-5777. |
[55] |
MOLOMO R N, BASERA W, CHETTY-MHLANGA S, et al. Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, SOCIO-ECONOMIC factors and lifestyles: a cross-sectional study among school BOYS IN the rural western cape, South Africa[J]. Environmental pollution, 2021,275:116660-116668.
doi: 10.1016/j.envpol.2021.116660 URL |
[56] |
KAUSHAL J, KHATRI M, ARYA S K. A treatise on organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination[J]. Ecotoxicology and environmental safety, 2021,207:111483-111494.
doi: 10.1016/j.ecoenv.2020.111483 URL |
[57] |
LIU J, WANG X L, FANG W S, et al. Soil properties, presence of microorganisms, application dose, soil moisture and temperature influence the degradation rate of Allyl isothiocyanate in soil[J]. Chemosphere, 2020,244:125540-125547.
doi: 10.1016/j.chemosphere.2019.125540 URL |
[58] |
REEDICH L M, MILLICAN M D, KOCH P L. Temperature impacts on soil microbial communities and potential implications for the biodegradation of turfgrass pesticides[J]. Journal of environmental quality, 2017,46(3):490-497.
doi: 10.2134/jeq2017.02.0067 URL |
[59] |
ELŻBIETA W, AGATA J, URSZULA W, et al. Soil biological activity as an indicator of soil pollution with pesticides-a review[J]. Applied soil ecology, 2020,147:103356-103368.
doi: 10.1016/j.apsoil.2019.09.006 URL |
[60] |
KAN H S, WANG T C, YU J X, et al. Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave[J]. Journal of hazardous materials, 2020,401:123361-123371.
doi: 10.1016/j.jhazmat.2020.123361 URL |
[1] | 刘颖, 耿丹丹, 韩永胜, 魏敏, 刘柳. 环保型农林保水剂研制、性能与应用[J]. 中国农学通报, 2022, 38(7): 86-90. |
[2] | 曹永清, 刘艳, 张丽慧, 晋婷婷, 任嘉红. 荧光假单胞CLW17菌株对草甘膦的降解及其机制初探[J]. 中国农学通报, 2022, 38(30): 108-117. |
[3] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. |
[4] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. |
[5] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[6] | 高岩, 李志斐, 刘阳, 王广军, 谢骏, 郭照良. 草型湖泊水生植物残体的生物降解研究进展[J]. 中国农学通报, 2022, 38(15): 53-59. |
[7] | 赵记军, 于显枫, 张绪成. 地膜源头减量化技术可行路径探讨[J]. 中国农学通报, 2021, 37(9): 57-63. |
[8] | 王岩, 彭强, 赵小明, 尹恒. 生物降解农药残留的研究进展[J]. 中国农学通报, 2021, 37(18): 117-124. |
[9] | 于婷婷, 邱鹏程, 陈强, 石富, 杨雅钧. 气相色谱法测定蔬菜和水果中有机磷及拟除虫菊酯类农药残留不确定度分析[J]. 中国农学通报, 2021, 37(17): 129-136. |
[10] | 许斌, 韩萍, 薛玉芬. 污水厂中草甘膦降解菌的筛选及其降解特性研究[J]. 中国农学通报, 2021, 37(14): 84-89. |
[11] | 刘颖, 魏敏, 杨平华, 耿丹丹. 明胶/PVA类肥料包膜材料的制备与环保性能研究[J]. 中国农学通报, 2021, 37(14): 90-96. |
[12] | 高旭华, 黄瑶珠, 谢东. 不同覆盖材料对花生养分吸收和土壤养分变化的影响[J]. 中国农学通报, 2020, 36(8): 55-59. |
[13] | 何宇, 梁晓曦, 潘润西, 韦锋, 卢秋, 洪欣, 陈蓓. 国内土壤环境污染防治进程及展望[J]. 中国农学通报, 2020, 36(28): 99-105. |
[14] | 谢国雄, 楼旭平, 姜铭北, 章明奎. 大气沉降对水稻各器官铅镉汞砷积累的影响[J]. 中国农学通报, 2020, 36(22): 86-91. |
[15] | 刘子璇, 石卉, 王平, 王沛颖, 朱健. 生物活性炭流化床对生物柴油废水的降解效应与化学势变[J]. 中国农学通报, 2020, 36(20): 77-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||