欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (23): 145-154.doi: 10.11924/j.issn.1000-6850.casb2024-0773

• 农业信息·科技教育 • 上一篇    

基于迁移改进MobileNetV3的玉米叶片病害识别研究

金雨纯(), 甄元元, 刘平()   

  1. 宁夏大学电子与电气工程学院,银川 750021
  • 收稿日期:2024-12-19 修回日期:2025-08-06 出版日期:2025-08-19 发布日期:2025-08-19
  • 通讯作者:
    刘平,男,1981年出生,四川资阳人,副教授,博士,研究方向:物联网应用、通信与信息系统。通信地址:750021 宁夏银川市西夏区文萃北街217号宁夏大学怀远校区德言楼 宁夏大学电子与电气工程学院,Tel:0951-2061572,E-mail:
  • 作者简介:

    金雨纯,女,1997年出生,浙江诸暨人,在读硕士研究生,研究方向:图像处理。通信地址:750021 宁夏银川市西夏区文萃北街217号宁夏大学怀远校区德言楼 宁夏大学电子与电气工程学院,E-mail:

  • 基金资助:
    宁夏自然科学基金项目“宁夏黄河灌溉水中化学污染物的生态风险、源解析及空间预测研究”(2023AAC03140)

Maize Leaf Disease Recognition Based on Transferred and Improved MobileNetV3

JIN Yuchun(), ZHEN Yuanyuan, LIU Ping()   

  1. School of Electronics and Electrical Engineering, Ningxia University, Yinchuan 750021
  • Received:2024-12-19 Revised:2025-08-06 Published:2025-08-19 Online:2025-08-19

摘要:

近年来,深度学习算法在图像识别领域的应用已逐渐拓展到农业生产中,特别是在作物病害检测方面。结合深度学习中的迁移学习技术,笔者提出了一种基于MobileNetV3改进模型的玉米叶片病害识别方法。将在ImageNet数据集上预训练的权重迁移到目标数据集,并在此基础上对模型进行优化。优化过程中采用CBAM注意力模块替换了原有的SE模块,并在卷积层中引入空洞卷积以增大感受野。经过训练得到了一个最优玉米叶片病害识别模型。经过迁移学习后,模型在训练集上的准确率由96.30%提升至98.20%,提高了1.9个百分点。在此基础上进一步优化后,模型准确率达到99.09%,识别效果更为优异。该改进不仅保留了MobileNetV3的轻量化特性,而且显著提高了玉米叶片病害识别的性能。

关键词: 玉米病害识别, 迁移学习, MobileNetV3, 注意力机制

Abstract:

In recent years, the application of deep learning algorithms in the field of image recognition has gradually expanded into agricultural production, particularly in the area of crop disease detection. Leveraging transfer learning techniques within deep learning, a method for identifying corn leaf diseases based on an improved MobileNetV3 model has been proposed. Pre-trained weights from the ImageNet dataset were transferred to the target dataset, and the model was further optimized. During the optimization process, the original SE (Squeeze-and-Excitation) module was replaced with a CBAM (Convolutional Block Attention Module) attention module, and dilated convolutions were introduced into the convolutional layers to increase the receptive field. After training, an optimal model for corn leaf disease identification was obtained. After applying transfer learning, the model's accuracy on the training set increased from 96.30% to 98.20%, with an improvement of 1.9 percentage points. With further optimization, the accuracy reached 99.09%, demonstrating improved classification performance. This enhancement not only retains the lightweight characteristics of MobileNetV3 but also significantly boosts the performance of corn leaf disease identification.

Key words: corn disease identification, transfer learning, MobileNetV3, attention mechanism