[1] |
张清榕. 中国海洋软骨鱼类种类分布、资源现状及养护和管理策略探讨[D]. 厦门: 厦门大学, 2007.
|
[2] |
柴爱红. 中国软骨鱼类物种多样性及其利用评估[D]. 天津: 天津科技大学, 2015.
|
[3] |
张公俊, 杨长平, 孙典荣, 等. 北部湾中北部海域鱼类群落的季节变化特征[J]. 南方农业学报, 2021, 52(10):2861-2871.
|
[4] |
赵宇. 台湾海峡南部大吻斜齿鲨Scoliodon macrorhynchos年龄生长与生殖生物学研究[D]. 厦门: 厦门大学, 2018.
|
[5] |
陈骁, 潘聪, 杨圣云. 中国南部沿海尖头斜齿鲨遗传多样性研究[J]. 台湾海峡, 2008(3):303-308.
|
[6] |
CHEN X, PENG X, ZHANG P, et al. Complete mitochondrial genome of the spadenose shark (Scoliodon macrorhynchos)[J]. Mitochondrial DNA, 2014, 25(2):91-92.
doi: 10.3109/19401736.2013.784751
pmid: 23834080
|
[7] |
JABADO R W. The fate of the most threatened order of elasmobranchs: Shark-like batoids (Rhinopristiformes) in the Arabian Sea and adjacent waters[J]. Fisheries research, 2018,204:448-457.
|
[8] |
陈明茹, 丘书院, 杨圣云. 闽南近海关头斜齿鲨的精巢结构及精子发育[J]. 台湾海峡, 1999(4):2.
|
[9] |
朱江峰, 戴小杰, 李延. 浙江沿海尖头斜齿鲨生物学特征的初步研究[J]. 上海水产大学学报, 2008(5):19.
|
[10] |
陈明茹, 丘书院, 杨圣云. 尖头斜齿鲨胚胎发育中的数理分析[J]. 海洋科学, 2000(9):16.
|
[11] |
陈明茹, 丘书院, 杨圣云. 闽南近海尖头斜齿鲨的生殖生物学研究[J]. 海洋学报, 2001(3):21.
|
[12] |
FAN H, HU Y, WU Q, et al. Conservation genetics and genomics of threatened vertebrates in China[J]. Journal of genetics and genomics, 2018, 45(11):593-601.
doi: S1673-8527(18)30189-9
pmid: 30455039
|
[13] |
阚霞. 极危动物安吉小鲵的保护基因组学研究[D]. 金华: 浙江师范大学, 2021.
|
[14] |
LIU Y, SUN X, DRISCOLL C, et al. Genome-wide evolutionary analysis of natural history and adaptation in the world’s tigers[J]. Current biology, 2018, 28(23):3840-3849.
|
[15] |
LI S, LI B, CHENG C, et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species[J]. Genome biology, 2014, 15(12):557.
pmid: 25496777
|
[16] |
ALLENDORF F W, HOHENLOHE P A, LUIKART G. Genomics and the future of conservation genetics[J]. Nature reviews genetics, 2010, 11(10):697-709.
doi: 10.1038/nrg2844
pmid: 20847747
|
[17] |
BYRAPPA V, P A L, VYDIANATHAN R, et al. Elephant shark genome provides unique insights into gnathostome evolution[J]. Nature, 2014,505:174-179.
|
[18] |
PENG Z, QIANG Z, JIAO L, et al. A first insight into the genomic background of Ilex pubescens (Aquifoliaceae) by flow cytometry and genome survey sequencing[J]. BMC genomics, 2023, 24(1):270.
|
[19] |
EUNA J, JAE S L, EUNKYUNG C, et al. Whole genome survey and microsatellite motif identification of Artemia franciscana[J]. Bioscience reports, 2021, 41(3):1-7.
|
[20] |
HUANG Y, BIAN C, LIU Z, et al. The first genome survey of the Antarctic Krill (Euphausia superba) provides a valuable genetic resource for polar biomedical research[J]. Marine drugs, 2020, 18(4):185.
|
[21] |
CHEN K, GUO R, XIA L, et al. Genome survey and characterization of new microsatellite markers in Hynobius amjiensis (Caudata: Hynobiidae)[J]. Salamandra, 2023, 59(2):117-124.
|
[22] |
JINMU K, SEUNG JAE L, EUNA J, et al. Whole-genome survey and microsatellite marker detection of antarctic crocodile icefish, Chionobathyscus dewitti[J]. Animals, 2022, 12(19):2598.
|
[23] |
赵蕊蕊. 条纹斑竹鲨基因组survey分析及遗传标记开发[D]. 舟山: 浙江海洋大学, 2023.
|
[24] |
SONG N, MA S Y, ZHAO X, et al. Genomic characteristics of Okamejei kenojei and the implications to its evolutionary biology study[J]. Marine biotechnology, 2023, 25(5):815-823.
|
[25] |
陈大刚, 张美昭. 中国海洋鱼类[M]. 青岛: 中国海洋大学出版社, 2016.
|
[26] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-20.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[27] |
LIU B H, SHI Y J, YUAN J Y, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects[J]. Quantitative biology, 2013, 35(S1-3):62-67.
|
[28] |
LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2: An empirically improved memory-efficient short-read denovo assembler[J]. GigaScience, 2012, 1(1):18.
|
[29] |
SONG M H, YAN C, LI J T. MEANGS: An efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data[J]. Briefings in bioinformatics, 2021, 23(1):1.
|
[30] |
WATARU I, TSUKASA F, RYOTA I, et al. MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline[J]. Molecular biology & evolution, 2013(11):2531-2540.
|
[31] |
KOICHIRO T, GLEN S, SUDHIR K. MEGA11: Molecular evolutionary genetics analysis version 11[J]. Molecular biology and evolution, 2021(7):7.
|
[32] |
PEARCE J, FRASER M W, SEQUEIRA A M M, et al. State of shark and ray genomics in an era of extinction[J]. Frontiers in marine science, 2021(8):1-11.
|
[33] |
赵蕊蕊, 徐胜勇. 绒杜父鱼全基因组survey分析及微卫星分布特征[J]. 中国水产科学, 2022, 29(7):994-1001.
|
[34] |
XU S Y, SONG N, XIAO S J, et al. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus[J]. Bioscience reports, 2020,2:4-6.
|
[35] |
XU S Y, ZHAO L, XIAO S J, et al. Whole genome resequencing data for three rockfish species of Sebastes[J]. Scientific data, 2019, 6(1):1-6.
|
[36] |
高焕, 孔杰. 串联重复序列的物种差异及其生物功能[J]. 动物学研究, 2005(5):555-564.
|
[37] |
柳莹, 唐永政, 高丽. 微卫星DNA进化特征研究进展[J]. 基因组学与应用生物学, 2014, 33(6):1391-1400.
|
[38] |
MARTIN A P, NAYLOR G J, PALUMBI S R. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals[J]. Nature, 1992,357:153-155.
|