中国农学通报 ›› 2014, Vol. 30 ›› Issue (22): 1-7.doi: 10.11924/j.issn.1000-6850.2014-0453
• 林学 园艺 园林 • 下一篇
倪燕婕
收稿日期:
2014-02-25
修回日期:
2014-04-07
出版日期:
2014-08-05
发布日期:
2014-08-05
基金资助:
Received:
2014-02-25
Revised:
2014-04-07
Online:
2014-08-05
Published:
2014-08-05
摘要: microRNAs是一类由特定RNA聚合酶Ⅱ转录本加工而来的长为20~24核苷酸的小分子,这类小分子在植物中的功能主要是通过降解靶标基因来调控其互补序列的mRNA的稳定性。近年来高通量测序技术的飞速发展加速了microRNA研究的进展。为了对林木microRNA研究的最新进展和应用前景有更为全面的了解,本文从植物miRNA的发现,林木miRNA研究的发展以及amiRNA应用于林木的遗传操作等三方面进行综述。特别阐述了杨属miRNA,果树miRNA,桉树、茶树、橡胶树和麻疯树miRNA,沙冬青miRNA,裸子植物miRNA等的研究进展。随着miRNA数量的增加,未来miRNA的研究将锁定到其功能的验证方面。因此,了解林木miRNA的发展现状及趋势非常重要。
倪燕婕. 林木microRNA及其在遗传育种的应用研究进展[J]. 中国农学通报, 2014, 30(22): 1-7.
[1] Voinnet O. Origin, Biogenesis, and Activity of Plant MicroRNAs [J]. Cell,2009,136(4):669-687. [2] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell. 1993,75(5):843-854. [3] Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell,2013,25(7):2383-2399. [4] Lu S, Li Q, Wei H, et al. Ptr- miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. PNAS,2013,110(26):10848-10853. [5] Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarecrow- like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science,2002,297(5589):2053-2056. [6] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways[J]. Nat Rev Genet,2007,8(11): 884-896. [7] Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297. [8] Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell,2005,17(5): 1376-1386. [9] Vazquez F, Legrand S, Windels D. The biosynthetic pathways and biological scopes of plant small RNAs[J]. Trends Plant Sci., 2010,15 (6):337-345. [10] 杨曦,何玉科.植物 microRNA 的生物合成和调控功能[J].生命科学,2010(7):688-696. [11] 周冬根,罗玉萍,李思光.MicroRNA的结构、生物合成及功能[J].生物技术通报,2005(5):20-26. [12] Tomari Y, Matranga C, Haley B, et al. A protein sensor for siRNA asymmetry[J]. Science,2004,306(5700):1377-1380. [13] 郭强,项安玲,杨清,等.利用 EST及生物信息学方法挖掘马铃薯中miRNA及其靶基因[J].科学通报,2007(14):1656-1664. [14] Jones- Rhoades M W, Bartel D P. Computational identification of plant MicroRNAs and their targets, including a stress- induced miRNA[J]. Mol Cell,2004,14(6):787-799. [15] Lu C, Kulkarni K, Souret F F, et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA- dependent RNA polymerase-2 mutant[J]. Genome Res,2006,16(10):1276-1288. [16] Heisel S E, Zhang Y, Allen E, et al. Characterization of Unique Small RNA Populations from Rice Grain[J]. PLoS One,2008,3 (e28718). [17] Simon S A, Meyers B C, Sherrier D J. MicroRNAs in the Rhizobia Legume Symbiosis[J]. Plant Physiol,2009,151(3):1002-1008. [18] German M A, Pillay M, Jeong D, et al. Global identification of microRNA- target RNA pairs by parallel analysis of RNA ends[J]. Nat Biotechnol,2008,26(8):941-946. [19] Addo- Quaye C, Eshoo T W, Bartel D P, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Curr Biol,2008,18(10):758-762. [20] 沈亚欧,林海建,张志明,等.植物逆境 miRNA 研究进展[J].遗传, 2009(3):227-235. [21] 许振华,谢传晓.植物 microRNA 与逆境响应研究进展[J].遗传,2010(10):1018-1030. [22] 丁艳菲,王光钺,傅亚萍,等.miR398在植物逆境胁迫应答中的作用[J].遗传,2010(2):129-134. [23] 安凤霞,梁艳,曲彦婷,等.MicroRNA 在调节植物生长发育和逆境胁迫中的作用[J].植物生理学报,2013(4):317-323. [24] Lu S F, Sun Y H, Shi R, et al. Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. Plant Cell,2005,17(8):2186-2203. [25] Lu S, Sun Y, Chiang VL. Stress-responsive microRNAs in Populus [J]. Plant J.,2008,55(1):131-151. [26] Li B, Yin W, Xia X. Identification of microRNAs and their targets from Populus euphratica[J]. Biochem Bioph Res Co,2009,388(2): 272-277. [27] Jia X, Ren L, Chen Q, et al. UV- B- responsive microRNAs in Populus tremula[J]. J Plant Physiol,2009,166(18):2046-2057. [28] Stokstad E. Genomics - Poplar tree sequence yields genome double take[J]. Science,2006,313(5793):1556. [29] Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science,2006, 313(5793):1596-1604. [30] Brunner A M, Busov V B, Strauss S H. Poplar genome sequence: functional genomics in an ecologically dominant plant species[J]. Trends Plant Sci. ,2004,9(1):49-56. [31] Tuskan G A, DiFazio S P, Teichmann T. Poplar genomics is getting popular: The impact of the poplar genome project on tree research [J]. Plant Biol,2004,6(1):2-4. [32] Sunkar R, Zhu J K. Novel and stress- regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell,2004,16(8):2001- 2019. [33] Puzey J R, Karger A, Axtell M, et al. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets[J]. PLoS One,2012, 7(3):e33034. [34] Li B, Qin Y, Duan H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. J Exp Bot,2011,62(11):3765-3779. [35] Ren Y, Chen L, Zhang Y, et al. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress[J]. Funct Integr Genom,2012,12(2):327- 339. [36] Ko J H, Prassinos C, Han K H. Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class ⅢHD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166) [J]. New Phytol, 2006,169(3):469-478. [37] Song C, Fang J, Li X, et al. Identification and characterization of 27 conserved microRNAs in citrus[J]. Planta,2009,230(4):671-685. [38] Song C, Fang J, Wang C, et al. MiR- RACE, a New Efficient Approach to Determine the Precise Sequences of Computationally Identified Trifoliate Orange (Poncirus trifoliata) MicroRNAs[J]. PLoS One,2010,5(e108616). [39] Song C, Wang C, Zhang C, et al. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata)[J]. BMC Genom,2010,11:431. [40] Gleave A P, Ampomah-Dwamena C, Berthold S, et al. Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags[J]. Tree Genet Genom,2008,4(2):343-358. [41] Yu H, Song C, Jia Q, et al. Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR- RACE[J]. Physiol Plant,2011,141 (1):56-70. [42] Varkonyi-Gasic E, Gould N, Sandanayaka M, et al. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap[J]. BMC Plant Biol,2010,10:159. [43] Zhebentyayeva T N, Swire-Clark G, Georgi L L, et al. A framework physical map for peach, a model Rosaceae species[J]. Tree Genet Genom,2008,4(4):745-756. [44] Niu Q, Qian M, Liu G, et al. A genome- wide identification and characterization of mircoRNAs and their targets in‘Suli’pear (Pyrus pyrifolia white pear group) [J]. Planta,2013, 238(6): 1095- 1112. [45] Mica E, Piccolo V, Delledonne M, et al. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera[J]. BMC Genom,2009,10:558. [46] Victor M. MicroRNAs in differentiating tissues of Populus and Eucalyptus trees[D]. Pretoria: University of Pretoria,2006. [47] McNair G. Whole- tree and tension wood- associated expression profiles of microRNAs in Eucalyptus trees[D]. Pretoria: University of Pretoria,2009. [48] Pappas M, Reis A, Farinell L, et al. Interspecific discovery and expression profiling of Eucalyptus microRNAs by deep sequencing [J]. BMC Proc,2011,5(S7):173. [49] Prabu G R, Mandal A K A. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis).[J]. Genom Proteom Bioinform,2010,8(2):113- 121. [50] Zeng C, Wang W, Zheng Y, et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants[J]. Nucleic Acids Res,2010,38(3):981-995. [51] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genom,2012,13:266. [52] Kirst M, Johnson A F, Baucom C, et al. Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana[J]. PNAS,2003,100(12):7383- 7388. [53] Pavy N, Johnson J J, Crow J A, et al. ForestTreeDB: a database dedicated to the mining of tree transcriptomes[J]. Nucleic Acids Res,2007,35(SI):D888-D894. [54] Ralph S G, Chun H J E, Kolosova N, et al. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 highquality, sequence- finished full- length cDNAs for Sitka spruce (Picea sitchensis)[J]. BMC Genom,2008,9:484. [55] Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants[J]. Plant Cell,2005,17(6):1658-1673. [56] Zhang B H, Pan X P, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J]. Plant J,2006,46(2):243- 259. [57] Wan L C, Zhang H, Lu S, et al. Transcriptome-wide identification and characterization of miRNAs from Pinus densata[J]. BMC Genom,2012,13:132. [58] Lu S, Sun Y, Amerson H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development [J]. Plant J,2007,51(6):1077-1098. [59] Morin R D, Aksay G, Dolgosheina E, et al. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa [J]. Genome Res,2008,18(4):571-584. [60] Qiu D, Pan X, Wilson I W, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis) [J]. Gene,2009,436(1-2):37-44. [61] Yakovlev I A, Fossdal C G, Johnsen O. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce[J]. New Phytol, 2010,187(4):1154-1169. [62] Matzke M, Kanno T, Huettel B, et al. Targets of RNA- directed DNA methylation[J]. Curr Opin Plant Biol,2007,10(5):512-519. [63] Martienssen, R. A. Heterochromatin, small RNA and postfertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis[J]. New Phytologist,2010,186 (1SI): 46-53. [64] Dolgosheina E V, Morin R D, Aksay G, et al. Conifers have a unique small RNA silencing signature[J]. RNA,2008,14(8):1508- 1515. [65] Ahuja M R, Neale D B. Evolution of genome size in conifers[J]. Silvae Genet,2005,54(3):126-137. [66] Zhang J, Wu T, Li L, et al. Dynamic expression of small RNA populations in larch (Larix leptolepis) [J]. Planta,2013,237(1):89- 101. [67] Zhang J, Zhang S, Han S, et al. Deciphering Small Noncoding RNAs during the Transition from Dormant Embryo to Germinated Embryo in Larches (Larix leptolepis) [J]. PLoS One,2013,8(12): e81452. [68] Du J, Mansfield S D, Groover A T. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth[J]. Plant J,2009,60(6):1000-1014. [69] Shi R, Yang C, Lu S, et al. Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa[J]. Planta,2010,232 (6):1281-1288. [70] 叶梅霞,刘军梅,李昊,等.amiRNAi-实现高效稳定的特异基因沉默新方法[J].中国生物工程杂志,2010(08):118-125. |
[1] | 赵明新, 曹刚, 王玮, 曹素芳, 李红旭. 5个梨授粉品种与‘玉露香梨’授粉效应比较研究[J]. 中国农学通报, 2022, 38(28): 52-57. |
[2] | 陈思婷, 刘蕊, 卢丽兰. 3种水果型椰子的抽花规律研究[J]. 中国农学通报, 2022, 38(19): 43-46. |
[3] | 区善汉, 梅正敏, 张社南, 贺申魁, 刘冰浩, 袁洁, 肖远辉, 莫健生. 生长调节剂及环割(扎)对‘桂柚1号’成花与坐果的影响[J]. 中国农学通报, 2021, 37(36): 73-79. |
[4] | 颜丽菊,马志方,林公标,朱建军,朱萧婷,朱潇婷,蒋 芯. 人工控梢提高初投产期‘东魁’杨梅坐果率的研究[J]. 中国农学通报, 2016, 32(16): 72-76. |
[5] | 康亚璇,韩建伟,王爱华,杜增峰,庞晓明,李颖岳. 枣树杂交育种中提高坐果率和种子得率的措施[J]. 中国农学通报, 2015, 31(10): 112-118. |
[6] | 宋丽华 曹兵 张向东. 不同药剂喷施处理对设施栽培‘灵武长枣’的影响[J]. 中国农学通报, 2014, 30(4): 190-194. |
[7] | 陈轶. 亚洲百合种内杂交亲和性研究[J]. 中国农学通报, 2014, 30(13): 173-177. |
[8] | 郭媛 邵有全 马卫华 申晋山 郭宝贝 武文卿. ‘砀山酥梨’花柱可授性及蜜蜂授粉特性的研究[J]. 中国农学通报, 2013, 29(16): 110-114. |
[9] | 马庆华1,2,续九如2,王贵禧1,姚立新2. 花期促果措施对冬枣内源激素和坐果率的影响[J]. 中国农学通报, 2010, 26(9): 234-238. |
[10] | 薛义霞 李亚灵 温祥珍. 空气湿度对高温下番茄生殖生长的影响[J]. 中国农学通报, 2010, 26(15): 291-295. |
[11] | 欧世金1,朱建华2,陈昇1,阮经宙3. 龙眼雌花数和坐果率与温度及降雨量的关系[J]. 中国农学通报, 2010, 26(1): 149-153. |
[12] | 李兵伟,朱立武. 授粉品种对砀山酥梨坐果及果实萼片宿存的影响[J]. 中国农学通报, 2009, 25(2): 164-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||