| [1]	Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus[J]. Science,2002,296:343-346. [2]	Busi M V, Bustamante C D, Angelo C, et al. MADS-box genes expressed during tomato seed and fruit development[J]. Plant Mol Biol,2003,52:801-815.
 [3]	Hileman L C, Sundstrom J F, Litt A, et al. Molecular and phylogenetic analyses of the MADS-Box gene family in tomato[J]. Mol Biol Evol,2006,23:2245-2258.
 [4]	Giovannoni J. Fruit ripening mutants yield insights into ripening control.[J] Curr Opin Plant Biol,2007,10:283-289.
 [5]	Smaczniak C, Immink R G, Angenent G C, et al. Developmental and evolutionary diversity of plant MADS domain factors: Insights from recent studies[J]. Development,2012,139:3081-3098.
 [6]	Masiero S, Colombo L, Grini P E, et al. The emerging importance of type I MADS box transcription factors for plant reproduction[J]. Plant Cell,2011,23:865-872.
 [7]	Shirzadi R, Andersen E D, Bjerkan K N, et al. Genome-wide transcript profiling of endosperm without paternal contribution identifies parent-of-origin-dependent regulation of AGAMOUS-LIKE36[J]. PLoS Genet,2011,7:e1001303.
 [8]	Seymour G B, Ryder C D, Cevik V, et al. A SEPALLATA gene is involved in the development and ripening of strawberry(Fragaria×ananassa Duch.) fruit, anon-climacteric tissue[J]. Journal of Experimental Botany,2011,62:1179-1188.
 [9]	Heijimans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side[J]. J Exp Bot,2012,63:5397-5404.
 [10]	Gramzow L, Barker E, Schulz C, et al. Selaginella genome analysis – Entering the “homoplasy heaven” of the MADS world[J]. Front Plant Sci,2012,3:214.
 [11]	Gramzow L, Theissen G. A hitchhiker’s guide to the MADS world of plants[J]. Genome Biol,2010,11:214.
 [12]	Folter S, Angenent G C. Trans meets cis in MADS science[J]. Trends Plant Sci,2006,11:224-231.
 [13]	Theiβen G, Kim J T, Saedler H. Classification and Phylogeny of the MADS-box multi gene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of enkaryotes[J]. J Mol Evol,1996,43: 484-516.
 [14]	Kauffmann, Melzer R, Theiβen G, et al. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants[J]. Gene,2005,347:183-198.
 [15]	Tang W, Perry S. Binding site selection for the plant MADS domain protein AGL15[J]. J Biol Chem,2003,278:28154-28195
 [16]	Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immuno precipitation[J]. BMC Plant Biol,2011,11:26.
 [17]	Ito Y, Kitagawa M, Ihashi N, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN[J]. Plant Journal,2008,55:212-223.
 [18]	Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biol Chem,1997,378:1079-1101.
 [19]	Moon H, Callahany A M. Development regulation of peach ACC oxidase promoter-GUS fusions in transgenic tomato fruits[J]. J Exp Bot,2004,55:1519-1528.
 [20]	Lincoln J E, Fischer R I. Transplantation studies with Immature Fruit of Normal, and rin and nor Mutant Tomatoes[J]. Plant Physiol,1975,55:1120-1122.
 [21]	Poovaiah B W, Nukaya A. Polygalacturonase and Celiulase Ensymes in the Normal Rutgers and Mutant rin Tomato Fruits and Their Relationship to the Respiratory Climacteric[J]. Plant Physiol,1979,64:534-537.
 [22]	Kitagawa M, Ito H, Shiina T, et al. Characterization of tomato fruit ripening and analysis of gene expression in F1 hybrids of the ripening inhibitor(rin)mutant[J]. Physiol Plant,2005,123:331-338.
 [23]	Kitagawa M, Nakamura N, Usuda H, et al. Ethylene Biosynthesis Regulation in tomato fruit from the F1 hybrid of the ripening inhibitor(rin)mutant[J]. Biosci Biochem,2006,70:1769-1772.
 [24]	Fujisawa M, Nakano T, Shima Y, et al. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening[J]. Plant Cell,2013.
 [25]	Qin G Z, Wang Y Y, Cao B H, et al. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening[J]. Plant Journal,2012,70:243-255.
 [26]	Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerase ripening processes in a COLORLESS NONRIPENING-Dependent manner[J]. Plant Physiol,2011,157:1568-1579.
 [27]	Fujisawa M, Shima Y, Nakagawa H, et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses[J]. Planta,2012,235:1107-1122.
 [28]	Lin Z, Hong Y, Yin M, et al. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening[J]. Plant J,2008,55:301-310.
 [29]	Manning K, T?r M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet,2006,38:948-952.
 [30]	Fraser P D, Bramley P, Seymour G B. Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening[J]. Phytochemistry,2001,58:75-79.
 [31]	Orfila C, Huisman M M, Willats W G, et al. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening[J]. Planta,2002,215:440-447.
 [32]	Eriksson E M, Bovy A, Manning K, et al. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening.[J] Plant Physiol,2004,136:4184-4197.
 [33]	Jaakola L, Poole M, Jones M O, et al. A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits[J]. Plant Physiol,2010,153(4):1619-1629.
 [34]	Barry C G J. Ethylene and fruit ripening[J]. J Plant Growth Regul,2007,26:143-159.
 [35]	Klee H, Tieman D. The tomato ethylene receptor gene family: form and function[J]. Physiol Plant,2002,115:336-341.
 [36]	Lincoln J E, Cordes S, Read E, et al. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development[J]. Proc Natl Acad Sci USA,1987,84(9):2793-2797.
 [37]	Dellapenna D, Lincoln J E, Fischer R L, et al. Transcriptional analysis of polygalacturonase and other ripening associated genes in rutgers, rin, nor, and Nr tomato fruit.[J] Plant Physiol,1989,90:1372-1377.
 [38]	Rose J K, Cosgrove D J, Albersheim P, et al. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiol, 2000,123:1583-1592.
 [39]	Cunningham F X, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583.
 [40]	Bartley G E, Viitanen P V, Bacot K O, et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway[J]. J Biol Chem,1992,267:5036-5039.
 [41]	Ray J, Moureau P, Bird C, et al. Cloning and characterization of a gene involved in phytoene synthesis from tomato[J]. Plant Mol Biol,1992,19:401-404.
 [42]	Dirinck P, Schreyen L, Schamp N. Aroma quality evaluation of tomatoes, apples and strawberries[J]. J Agric Food Chem,1977,25:759-762.
 [43]	Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening[J]. J Exp Bot,2002,53:2039-2055.
 [44]	Carrari F, Fernie A R. Metabolic regulation underlying tomato fruit development[J]. J Exp Bot,2006,57:1883-1897.
 [45]	Goff S A, Klee H J. Plant volatile compounds: sensory cues for health and nutritional value[J]. Science,2006,311:815-819.
 [46]	Buttery R G, Teranishi R, Ling L C. Fresh tomato aroma volatiles: a quantitative study[J]. J Agric Food Chem, 1987,35:540-544.
 [47]	Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of 	plant-derived flavor compounds[J]. Plant J,2008,54:712-732.
 [48]	Liavonchanka A, Feussner I. Lipoxygenases: occurrence, functions and catalysis[J]. J Plant Physiol,2006,163:348-357.
 [49]	Yilmaz E, Tandon K S, Scott J W, et al. Absence of a clear relationship between lipid pathway enzymes and volatile compounds in fresh tomatoes[J]. J Plant Physiol,2001,158:1111-1116.
 [50]	Chen G P, Hackett R, Walker D, et al. Identification of a specific iso form of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiol,2004,136:2641-2651.
 [51]	Leseberg C H, Eissler C L, Wang, et al. Interaction study of MADS-domain proteins in tomato[J]. Journal of Experimental Botany,2008,59(8):2253-2265.
 [52]	Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in thecontrol of floral architecture in Antirrhinum majus[J]. EMBO J,1999,18:5370-5379.
 [53]	Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell,2003,15:2603-2611.
 [54]	Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leavesinto floral organs[J]. Nature,2001,409:525-529.
 [55]	Immink R Q, Ferrario S, Busscher-Lange J, et al. Analysis of the petunia MADS-box transcription factor family[J]. Mol Genet Genomics,2003,268:598-606.
 [56]	Shchennikova A V, Shulga O A, Immink R, et al. Identificationand characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1 /FRUITFULL and SEPALLATA3 subfamilies[J]. Plant Physiol,2004,134:1632-1641.
 [57]	Rijpkema A S, Royaert S, Zethof J, et al. Analysis of the Petunia TM6 MADS box gene reveals ftinctional divergence withinthe DEF/AP3 lineage[J]. Plant Cell,2006,18:1819-1832.
 [58]	Theissen Q, Saedler H. Plant biology. Floral quartets[J]. Nature,2001,409:469-471.
 [59]	Shima Y, Kitagawa M, Fujisawa M, et al. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN[J]. Plant Mol Biol,2013,82(4-5):427-38.
 [60]	Fujisawa M, Shima Y, Nakagawa H, et al. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[J]. The Plant Cell,2014,26:89-101.
 [61]	Itkin M, Seybold H, Breitel D, et al. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network[J]. Plant J,2006,60:1081-1095.
 [62]	Vrebalov J, Pan I L, Arroyo A J, et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1[J]. Plant Cell,2009,21:3041-3062.
 [63]	Giménez E, Pineda B, Capel J, et al.[J] Functional analysis of the Arle quinmutant corroborates the essential role of the Arlequin/TAGL1  gene during reproductive development of tomato[J]. PLoS ONE,2010,5:e14427.
 [64]	Bemer M, Karlova R, Ballester A R, et al. The tomato FRUITFULL homologs TDR4/FUL1and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening[J]. Plant Cell,2012,24:4437-4451.
 [65]	Shima Y, Fujisawa M, Kitagawa M, et al. Tomato FRUITFULL homologs regulate fruitripening via ethylene biosynthesis[J]. Biosci Biotechnol Biochem,2014.
 [66]	Daminato M, Guzzo F, and Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression[J]. J Exp Bot,2013,64:3775-3786.
 
 |