中国农学通报 ›› 2015, Vol. 31 ›› Issue (18): 126-131.doi: 10.11924/j.issn.1000-6850.casb15030134
所属专题: 园艺
黎 卡,李 珊,罗云波,田慧琴,朱本忠
收稿日期:
2015-03-16
修回日期:
2015-04-23
接受日期:
2015-05-14
出版日期:
2015-07-27
发布日期:
2015-07-27
通讯作者:
朱本忠
基金资助:
Li Ka, Li Shan, Luo Yunbo, Tian Huiqin, Zhu Benzhong
Received:
2015-03-16
Revised:
2015-04-23
Accepted:
2015-05-14
Online:
2015-07-27
Published:
2015-07-27
摘要: 果实的成熟过程涉及一系列的生理生化变化,如色素的积累,果实的软化、香气和风味物质的形成等。这一过程在分子层面上受到多基因形成的复杂网络的调控,由许多转录因子单独或协同调控实现。为了清晰表述LeMADS-RIN的研究进展,首先对MADS-RIN做了简要介绍,然后论证了LeMADS-RIN是番茄果实成熟过程中关键调控因子,再对LeMADS-RIN影响果实成熟过程的许多生理生化过程和代谢途径进行了详细的归纳分析,如乙烯的生物合成、糖代谢、脂类代谢、色素形成、细胞壁代谢等。之后对LeMADS-RIN的调控模式的相关研究做了系统的回顾总结,随着RIN调控因子以及调控模式研究的深入,依赖于RIN调控而影响果实成熟的网络得到了进一步完善。笔者通过约60篇文献论证了果实成熟关键调控因子LeMADS-RIN对果实成熟调控的重要意义及相关的研究进展,最后对其研究前景提出了展望。
黎 卡,李 珊,罗云波,田慧琴,朱本忠. 番茄果实成熟关键调控因子MADS-RIN的研究进展[J]. 中国农学通报, 2015, 31(18): 126-131.
Li Ka,Li Shan,Luo Yunbo,Tian Huiqin and Zhu Benzhong. Research Progress on Tomato Fruit Ripening Regulator MADS-RIN[J]. Chinese Agricultural Science Bulletin, 2015, 31(18): 126-131.
[1] Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus[J]. Science,2002,296:343-346. [2] Busi M V, Bustamante C D, Angelo C, et al. MADS-box genes expressed during tomato seed and fruit development[J]. Plant Mol Biol,2003,52:801-815. [3] Hileman L C, Sundstrom J F, Litt A, et al. Molecular and phylogenetic analyses of the MADS-Box gene family in tomato[J]. Mol Biol Evol,2006,23:2245-2258. [4] Giovannoni J. Fruit ripening mutants yield insights into ripening control.[J] Curr Opin Plant Biol,2007,10:283-289. [5] Smaczniak C, Immink R G, Angenent G C, et al. Developmental and evolutionary diversity of plant MADS domain factors: Insights from recent studies[J]. Development,2012,139:3081-3098. [6] Masiero S, Colombo L, Grini P E, et al. The emerging importance of type I MADS box transcription factors for plant reproduction[J]. Plant Cell,2011,23:865-872. [7] Shirzadi R, Andersen E D, Bjerkan K N, et al. Genome-wide transcript profiling of endosperm without paternal contribution identifies parent-of-origin-dependent regulation of AGAMOUS-LIKE36[J]. PLoS Genet,2011,7:e1001303. [8] Seymour G B, Ryder C D, Cevik V, et al. A SEPALLATA gene is involved in the development and ripening of strawberry(Fragaria×ananassa Duch.) fruit, anon-climacteric tissue[J]. Journal of Experimental Botany,2011,62:1179-1188. [9] Heijimans K, Morel P, Vandenbussche M. MADS-box genes and floral development: the dark side[J]. J Exp Bot,2012,63:5397-5404. [10] Gramzow L, Barker E, Schulz C, et al. Selaginella genome analysis – Entering the “homoplasy heaven” of the MADS world[J]. Front Plant Sci,2012,3:214. [11] Gramzow L, Theissen G. A hitchhiker’s guide to the MADS world of plants[J]. Genome Biol,2010,11:214. [12] Folter S, Angenent G C. Trans meets cis in MADS science[J]. Trends Plant Sci,2006,11:224-231. [13] Theiβen G, Kim J T, Saedler H. Classification and Phylogeny of the MADS-box multi gene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of enkaryotes[J]. J Mol Evol,1996,43: 484-516. [14] Kauffmann, Melzer R, Theiβen G, et al. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants[J]. Gene,2005,347:183-198. [15] Tang W, Perry S. Binding site selection for the plant MADS domain protein AGL15[J]. J Biol Chem,2003,278:28154-28195 [16] Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immuno precipitation[J]. BMC Plant Biol,2011,11:26. [17] Ito Y, Kitagawa M, Ihashi N, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN[J]. Plant Journal,2008,55:212-223. [18] Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biol Chem,1997,378:1079-1101. [19] Moon H, Callahany A M. Development regulation of peach ACC oxidase promoter-GUS fusions in transgenic tomato fruits[J]. J Exp Bot,2004,55:1519-1528. [20] Lincoln J E, Fischer R I. Transplantation studies with Immature Fruit of Normal, and rin and nor Mutant Tomatoes[J]. Plant Physiol,1975,55:1120-1122. [21] Poovaiah B W, Nukaya A. Polygalacturonase and Celiulase Ensymes in the Normal Rutgers and Mutant rin Tomato Fruits and Their Relationship to the Respiratory Climacteric[J]. Plant Physiol,1979,64:534-537. [22] Kitagawa M, Ito H, Shiina T, et al. Characterization of tomato fruit ripening and analysis of gene expression in F1 hybrids of the ripening inhibitor(rin)mutant[J]. Physiol Plant,2005,123:331-338. [23] Kitagawa M, Nakamura N, Usuda H, et al. Ethylene Biosynthesis Regulation in tomato fruit from the F1 hybrid of the ripening inhibitor(rin)mutant[J]. Biosci Biochem,2006,70:1769-1772. [24] Fujisawa M, Nakano T, Shima Y, et al. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening[J]. Plant Cell,2013. [25] Qin G Z, Wang Y Y, Cao B H, et al. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening[J]. Plant Journal,2012,70:243-255. [26] Martel C, Vrebalov J, Tafelmeyer P, et al. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerase ripening processes in a COLORLESS NONRIPENING-Dependent manner[J]. Plant Physiol,2011,157:1568-1579. [27] Fujisawa M, Shima Y, Nakagawa H, et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses[J]. Planta,2012,235:1107-1122. [28] Lin Z, Hong Y, Yin M, et al. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening[J]. Plant J,2008,55:301-310. [29] Manning K, T?r M, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet,2006,38:948-952. [30] Fraser P D, Bramley P, Seymour G B. Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening[J]. Phytochemistry,2001,58:75-79. [31] Orfila C, Huisman M M, Willats W G, et al. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening[J]. Planta,2002,215:440-447. [32] Eriksson E M, Bovy A, Manning K, et al. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening.[J] Plant Physiol,2004,136:4184-4197. [33] Jaakola L, Poole M, Jones M O, et al. A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits[J]. Plant Physiol,2010,153(4):1619-1629. [34] Barry C G J. Ethylene and fruit ripening[J]. J Plant Growth Regul,2007,26:143-159. [35] Klee H, Tieman D. The tomato ethylene receptor gene family: form and function[J]. Physiol Plant,2002,115:336-341. [36] Lincoln J E, Cordes S, Read E, et al. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development[J]. Proc Natl Acad Sci USA,1987,84(9):2793-2797. [37] Dellapenna D, Lincoln J E, Fischer R L, et al. Transcriptional analysis of polygalacturonase and other ripening associated genes in rutgers, rin, nor, and Nr tomato fruit.[J] Plant Physiol,1989,90:1372-1377. [38] Rose J K, Cosgrove D J, Albersheim P, et al. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiol, 2000,123:1583-1592. [39] Cunningham F X, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:557-583. [40] Bartley G E, Viitanen P V, Bacot K O, et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway[J]. J Biol Chem,1992,267:5036-5039. [41] Ray J, Moureau P, Bird C, et al. Cloning and characterization of a gene involved in phytoene synthesis from tomato[J]. Plant Mol Biol,1992,19:401-404. [42] Dirinck P, Schreyen L, Schamp N. Aroma quality evaluation of tomatoes, apples and strawberries[J]. J Agric Food Chem,1977,25:759-762. [43] Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening[J]. J Exp Bot,2002,53:2039-2055. [44] Carrari F, Fernie A R. Metabolic regulation underlying tomato fruit development[J]. J Exp Bot,2006,57:1883-1897. [45] Goff S A, Klee H J. Plant volatile compounds: sensory cues for health and nutritional value[J]. Science,2006,311:815-819. [46] Buttery R G, Teranishi R, Ling L C. Fresh tomato aroma volatiles: a quantitative study[J]. J Agric Food Chem, 1987,35:540-544. [47] Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds[J]. Plant J,2008,54:712-732. [48] Liavonchanka A, Feussner I. Lipoxygenases: occurrence, functions and catalysis[J]. J Plant Physiol,2006,163:348-357. [49] Yilmaz E, Tandon K S, Scott J W, et al. Absence of a clear relationship between lipid pathway enzymes and volatile compounds in fresh tomatoes[J]. J Plant Physiol,2001,158:1111-1116. [50] Chen G P, Hackett R, Walker D, et al. Identification of a specific iso form of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiol,2004,136:2641-2651. [51] Leseberg C H, Eissler C L, Wang, et al. Interaction study of MADS-domain proteins in tomato[J]. Journal of Experimental Botany,2008,59(8):2253-2265. [52] Egea-Cortines M, Saedler H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in thecontrol of floral architecture in Antirrhinum majus[J]. EMBO J,1999,18:5370-5379. [53] Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell,2003,15:2603-2611. [54] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leavesinto floral organs[J]. Nature,2001,409:525-529. [55] Immink R Q, Ferrario S, Busscher-Lange J, et al. Analysis of the petunia MADS-box transcription factor family[J]. Mol Genet Genomics,2003,268:598-606. [56] Shchennikova A V, Shulga O A, Immink R, et al. Identificationand characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1 /FRUITFULL and SEPALLATA3 subfamilies[J]. Plant Physiol,2004,134:1632-1641. [57] Rijpkema A S, Royaert S, Zethof J, et al. Analysis of the Petunia TM6 MADS box gene reveals ftinctional divergence withinthe DEF/AP3 lineage[J]. Plant Cell,2006,18:1819-1832. [58] Theissen Q, Saedler H. Plant biology. Floral quartets[J]. Nature,2001,409:469-471. [59] Shima Y, Kitagawa M, Fujisawa M, et al. Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN[J]. Plant Mol Biol,2013,82(4-5):427-38. [60] Fujisawa M, Shima Y, Nakagawa H, et al. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[J]. The Plant Cell,2014,26:89-101. [61] Itkin M, Seybold H, Breitel D, et al. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network[J]. Plant J,2006,60:1081-1095. [62] Vrebalov J, Pan I L, Arroyo A J, et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1[J]. Plant Cell,2009,21:3041-3062. [63] Giménez E, Pineda B, Capel J, et al.[J] Functional analysis of the Arle quinmutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato[J]. PLoS ONE,2010,5:e14427. [64] Bemer M, Karlova R, Ballester A R, et al. The tomato FRUITFULL homologs TDR4/FUL1and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening[J]. Plant Cell,2012,24:4437-4451. [65] Shima Y, Fujisawa M, Kitagawa M, et al. Tomato FRUITFULL homologs regulate fruitripening via ethylene biosynthesis[J]. Biosci Biotechnol Biochem,2014. [66] Daminato M, Guzzo F, and Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression[J]. J Exp Bot,2013,64:3775-3786. |
[1] | 银珊珊, 周国彦, 顾博文, 武春成, 闫立英, 谢洋. 褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J]. 中国农学通报, 2022, 38(19): 30-36. |
[2] | 马洁, 王翰霖, 侯晓宁, 金瑞, 杨涓, 党文瑞, 王明国, 郑国琦. 外源硒对水稻抗氧化酶活性、产量及其体内硒含量影响的研究[J]. 中国农学通报, 2021, 37(6): 9-15. |
[3] | 娄慧, 赵曾强, 朱金成, 张薇. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报, 2021, 37(35): 13-19. |
[4] | 张永平,沈若刚,姚雪琴,陈幼源. 镉胁迫对甜瓜幼苗抗氧化酶活性和光合作用的影响[J]. 中国农学通报, 2015, 31(34): 82-88. |
[5] | 邵维 吴永波 杨静. 高温干旱复合胁迫对刺槐幼苗生理生化性能的影响[J]. 中国农学通报, 2014, 30(4): 1-7. |
[6] | 杨云 於丽华 彭春雪 邳植 郭夏立 孙菲 孙学伟 赵慧杰 耿贵. 不同浓度钾素对甜菜幼苗生理生化指标的影响[J]. 中国农学通报, 2014, 30(3): 139-145. |
[7] | 朱丹. Cd、水分单一及复合胁迫对异叶天南星叶片抗氧化酶的活性影响[J]. 中国农学通报, 2014, 30(15): 292-297. |
[8] | 李向应 韩亚琦 白瑞琴 李彦慧. SO2胁迫对紫叶李生理指标的影响[J]. 中国农学通报, 2012, 28(34): 108-111. |
[9] | 杨华庚 杨重法 陈慧娟 颜速亮 陈定光. 蝴蝶兰不同耐热性品种幼苗对高温胁迫的生理反应[J]. 中国农学通报, 2011, 27(2): 144-150. |
[10] | 王广元 吴海花 李广信 于晓慧 梅 青. 氮离子注入水稻诱变效果及抗氧化酶活性和丙二醛含量的比较[J]. 中国农学通报, 2010, 26(13): 63-66. |
[11] | 刘艳丽,许海霞,刘桂珍,金 艳,陈 平,崔党群. 小麦耐盐性研究进展[J]. 中国农学通报, 2008, 24(11): 202-207. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||