中国农学通报 ›› 2021, Vol. 37 ›› Issue (21): 98-105.doi: 10.11924/j.issn.1000-6850.casb2020-0558
所属专题: 资源与环境
吴彬1(), 徐晶晶1, 成艳红2, 叶成龙1(), 胡水金1,3
收稿日期:
2020-10-15
修回日期:
2020-12-16
出版日期:
2021-07-25
发布日期:
2021-07-29
通讯作者:
叶成龙
作者简介:
吴彬,男,1997年出生,江苏盐城人,在读硕士,研究方向:全球变化与土壤有机碳动态。通信地址:210095 江苏省南京市玄武区卫岗一号 南京农业大学卫岗校区,Tel:025-84399759,E-mail: 基金资助:
Wu Bin1(), Xu Jingjing1, Cheng Yanhong2, Ye Chenglong1(), Hu Shuijin1,3
Received:
2020-10-15
Revised:
2020-12-16
Online:
2021-07-25
Published:
2021-07-29
Contact:
Ye Chenglong
摘要:
为了解石灰施用对酸性土壤矿物结合有机碳的影响并促进酸性土壤的碳固定,本研究整合已发表的相关研究并在室内设置培养试验探究石灰添加调控酸性红壤矿物结合有机碳形成的可能机制。结果表明:大部分已发表的研究发现石灰添加可以显著促进酸性土壤中矿物结合有机碳的形成。室内控制试验发现石灰添加显著促进了秸秆分解转化为微生物生物量碳,这很可能是石灰促进矿物结合碳形成的主要机制之一。室内控制试验还发现石灰添加增加了钙键结合碳的含量,但是降低了铁铝结合碳的含量。综上可知,石灰添加有利于作物秸秆在酸性土壤中被微生物分解转化为矿物结合有机碳,但可能会导致不同化学键结合碳的相对含量发生变化。
中图分类号:
吴彬, 徐晶晶, 成艳红, 叶成龙, 胡水金. 石灰施用对酸性土壤矿物结合有机碳形成的影响[J]. 中国农学通报, 2021, 37(21): 98-105.
Wu Bin, Xu Jingjing, Cheng Yanhong, Ye Chenglong, Hu Shuijin. Effects of Liming on Formation of Mineral-associated Organic Carbon in Acidic Soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 98-105.
研究地点 | 土壤类型 | 石灰类型 | 初始pH | 采土深 度/cm | 微生物 生物量碳 | 植物生产力 | 土壤有机碳 | 矿物结合有机碳 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ranchi (India) | Typic Haplustalf | NA | 5.3 | 0~15 | NS | NA | NS | NS | [ | ||||||
Waite Agricultural Research Institute (Australia) | Rhodoxeralf | 碳酸钙 | 4.1 | 0~10 | NA | NA | NS | + | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | 白云石石灰 | 4.5 | 0~2.5 | NA | + | + | NS/+ | [ | ||||||
São Paulo State (Brazil) | Typic Haplorthox | 白云石石灰 | NA | 0~5 | NA | NS/+ | + | + | [ | ||||||
Wagga Wagga (Australia) | Oxic Paleustalf | 碳酸钙 | <4.7 | 0~5 | NS/+ | NA | - | NS | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | NA | 4.6 | 0~60 | NA | + | NS/+ | + | [ | ||||||
Harpenden (United Kingdom) | Aquic Paleudalf | 碳酸钙 | 4.4 | 0~23 | NA | NA | NA | + | [ |
研究地点 | 土壤类型 | 石灰类型 | 初始pH | 采土深 度/cm | 微生物 生物量碳 | 植物生产力 | 土壤有机碳 | 矿物结合有机碳 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ranchi (India) | Typic Haplustalf | NA | 5.3 | 0~15 | NS | NA | NS | NS | [ | ||||||
Waite Agricultural Research Institute (Australia) | Rhodoxeralf | 碳酸钙 | 4.1 | 0~10 | NA | NA | NS | + | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | 白云石石灰 | 4.5 | 0~2.5 | NA | + | + | NS/+ | [ | ||||||
São Paulo State (Brazil) | Typic Haplorthox | 白云石石灰 | NA | 0~5 | NA | NS/+ | + | + | [ | ||||||
Wagga Wagga (Australia) | Oxic Paleustalf | 碳酸钙 | <4.7 | 0~5 | NS/+ | NA | - | NS | [ | ||||||
Ponta Grossa (Brazil) | Oxisol | NA | 4.6 | 0~60 | NA | + | NS/+ | + | [ | ||||||
Harpenden (United Kingdom) | Aquic Paleudalf | 碳酸钙 | 4.4 | 0~23 | NA | NA | NA | + | [ |
[1] | 魏辅文, 聂永刚, 苗海霞, 等. 生物多样性丧失机制研究进展[J]. 科学通报, 2014, 59(06):430-437. |
[2] | 潘根兴, 陆海飞, 李恋卿, 等. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J]. 地球科学进展, 2015, 30(8):940-951. |
[3] |
Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388):198-200.
doi: 10.1038/nature10855 URL |
[4] |
Lutzow M V, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review[J]. European Journal of Soil Science, 2006, 57(4):426-445.
doi: 10.1111/ejs.2006.57.issue-4 URL |
[5] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007(6):2642-2650. |
[6] |
Schrumpf M, Kaiser K, Guggenberger G, et al. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals[J]. Biogeosciences, 2013, 10(3):1675-1691.
doi: 10.5194/bg-10-1675-2013 URL |
[7] |
Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1):25-56.
doi: 10.1007/s10533-005-0712-6 URL |
[8] |
Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176.
doi: 10.1023/A:1016125726789 URL |
[9] | 韩成卫, 李忠佩, 刘丽, 等. 溶解性有机碳在红壤水稻土中的吸附及其影响因素[J]. 生态学报, 2008(1):445-451. |
[10] | 黄倩, 吴靖霆, 陈杰, 等. 土壤吸附可溶性有机碳研究进展[J]. 土壤, 2015, 47(03):446-452. |
[11] |
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11):3578-3590.
doi: 10.1111/gcb.14781 pmid: 31365780 |
[12] |
Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4):988-995.
doi: 10.1111/gcb.12113 URL |
[13] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8):17105.
doi: 10.1038/nmicrobiol.2017.105 pmid: 28741607 |
[14] | 钟义军, 叶川, 黄欠如, 等. 红壤缓坡花生地不同水土保持措施效果分析[J]. 中国水土保持科学, 2011, 9(03):71-74. |
[15] | 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24):7615-7622. |
[16] |
Xu R K, Zhao A Z, Li Q M, et al. Acidity regime of the Red Soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115(1):75-84.
doi: 10.1016/S0016-7061(03)00077-6 URL |
[17] |
Fuentes J P, Bezdicek D F, Flury M, et al. Microbial activity affected by lime in a long-term no-till soil[J]. Soil and Tillage Research, 2006, 88(1-2):123-131.
doi: 10.1016/j.still.2005.05.001 URL |
[18] |
Manna M C, Swarup A, Wanjari R H, et al. Long-term fertilization, manure and liming effects on soil organic matter and crop yields[J]. Soil and Tillage Research, 2007, 94(2):397-409.
doi: 10.1016/j.still.2006.08.013 URL |
[19] |
Neale S P, Shah Z, Adams W A. Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming[J]. Soil Biology and Biochemistry, 1997, 29(9):1463-1474.
doi: 10.1016/S0038-0717(97)00040-0 URL |
[20] |
Caires E F, Garbuio F J, Churka S, et al. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield[J]. European Journal of Agronomy, 2008, 28(1):57-64.
doi: 10.1016/j.eja.2007.05.002 URL |
[21] |
Hati K M, Swarup A, Mishra B, et al. Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol[J]. Geoderma, 2008, 148(2):173-179.
doi: 10.1016/j.geoderma.2008.09.015 URL |
[22] |
Paradelo R, Virto I, Chenu C. Net effect of liming on soil organic carbon stocks: A review[J]. Agriculture, Ecosystems & Environment, 2015, 202:98-107.
doi: 10.1016/j.agee.2015.01.005 URL |
[23] |
Liu S L, Huang D Y, Chen A L, et al. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics[J]. Agriculture, Ecosystems & Environment, 2014, 184:51-58.
doi: 10.1016/j.agee.2013.11.019 URL |
[24] |
Chen D M, Li J J, Lan Z C, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment[J]. Functional Ecology, 2016, 30(4):658-669.
doi: 10.1111/fec.2016.30.issue-4 URL |
[25] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999:60-71. |
[26] |
Hu S, van Bruggen A. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil[J]. Microbial Ecology, 1997, 33(2):134-143.
pmid: 9052647 |
[27] |
Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.
doi: 10.1016/0038-0717(87)90052-6 URL |
[28] |
Ye C L, Chen D M, Hall S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls[J]. Ecology Letters, 2018, 21(8):1162-1173.
doi: 10.1111/ele.2018.21.issue-8 URL |
[29] | Xu J M, Yuan K N. Dissolution and fractionation of calcium—bound and iron—and aluminum—bound humus in soils[J]. Pedosphere, 1993, 3(1):75-80. |
[30] | Baldock J A, Aoyama M, Oades J M, et al. Structural amelioration of a South Australian red-brown earth using calcium and organic amendments[J]. Australian Journal of Soil Research, 1994, 32(3):571-594. |
[31] |
Briedis C, de Moraes Sá J C, Caires E F, et al. Changes in organic matter pools and increases in carbon sequestration in response to surface liming in an Oxisol under long-term no-till[J]. Soil Science Society of America Journal, 2012, 76(1):151-160.
doi: 10.2136/sssaj2011.0128 URL |
[32] |
Briedis C, de Moraes Sá J C, Caires E F, et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system[J]. Geoderma, 2012, 170:80-88.
doi: 10.1016/j.geoderma.2011.10.011 URL |
[33] |
Carmeis Filho A C A, Penn C J, Crusciol C A C, et al. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions[J]. Agriculture, Ecosystems & Environment, 2017, 241:11-23.
doi: 10.1016/j.agee.2017.02.027 URL |
[34] |
Chan K, Heenan D. Lime-induced loss of soil organic carbon and effect on aggregate stability[J]. Soil Science Society of America Journal, 1999, 63(6):1841-1844.
doi: 10.2136/sssaj1999.6361841x URL |
[35] |
Inagaki T M, de Moraes Sá J C, Caires E F, et al. Lime and gypsum application increases biological activity, carbon pools, and agronomic productivity in highly weathered soil[J]. Agriculture, Ecosystems & Environment, 2016, 231:156-165.
doi: 10.1016/j.agee.2016.06.034 URL |
[36] |
Tonon G, Sohi S, Francioso O, et al. Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK[J]. European Journal of Soil Science, 2010, 61(6):970-979.
doi: 10.1111/ejs.2010.61.issue-6 URL |
[37] |
Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems, 1998, 51(2):123-137.
doi: 10.1023/A:1009738307837 URL |
[38] | 孟赐福, 傅庆林. 施石灰石粉后红壤化学性质的变化[J]. 土壤学报, 1995, 32(03):300-307. |
[39] | Shaaban M, Peng Q, Hu R, et al. Dissolved organic carbon and nitrogen mineralization strongly affect CO2 emissions following lime application to acidic soil[J]. Journal of the Chemical Society of Pakistan, 2014, 36(5):875-879. |
[40] |
Filep T, Kincses I, Nagy P. Dissolved organic carbon (doc) and dissolved organic nitrogen (don) content of an arenosol as affected by liming in a pot experiment[J]. Archives of Agronomy and Soil Science, 2003, 49(1):111-117.
doi: 10.1080/0365034031000079793 URL |
[41] |
Kallenbach C M, Frey S D, Grandy A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7(1):13630.
doi: 10.1038/ncomms13630 URL |
[42] |
Gleixner G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies[J]. Ecological Research, 2013, 28(5):683-695.
doi: 10.1007/s11284-012-1022-9 URL |
[43] |
Mikutta R, Lorenz D, Guggenberger G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta, 2014, 144:258-276.
doi: 10.1016/j.gca.2014.08.026 URL |
[44] | Kleber M, Mikutta R, Torn M S, et al. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons[J]. European Journal of Soil Science, 2005:717-725. |
[45] |
Gu B H, Schmitt J, Chen Z L, et al. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1):38-46.
doi: 10.1021/es00050a007 URL |
[46] |
Mayes M A, Heal K R, Brandt C C, et al. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 2012, 76(3):1027-1037.
doi: 10.2136/sssaj2011.0340 URL |
[47] |
Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):25-35.
doi: 10.1016/j.gca.2006.08.047 URL |
[48] |
Porras R C, Hicks Pries C E, Mcfarlane K J, et al. Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils[J]. Biogeochemistry, 2017, 133(3):333-345.
doi: 10.1007/s10533-017-0337-6 URL |
[49] | 王擎运, 杨远照, 徐明岗, 等. 长期秸秆还田对砂姜黑土矿质复合态有机质稳定性的影响[J]. 土壤学报, 2019, 56(05):1108-1117. |
[50] | 李世朋, 汪景宽, 王开勇, 等. 土壤中钙键和铁/铝键结合的有机碳差异的比较[J]. 土壤通报, 2003,(06):501-504. |
[1] | 高琳琳, 王陈丝丝, 张宁, 胡含秀, 马友华. 石灰配施有机物料对稻麦轮作土壤镉影响研究[J]. 中国农学通报, 2022, 38(3): 81-86. |
[2] | 邓婷, 吴家龙. 耕地土壤酸化现状及治理路径探析——以广东省为例[J]. 中国农学通报, 2022, 38(24): 70-74. |
[3] | 刘天海, 苗人云, 陈春秀, 刘理旭, 周洁, 彭卫红, 黄忠乾, 谭昊. 石灰质量调查及添加量对糙皮侧耳熟料栽培的影响[J]. 中国农学通报, 2021, 37(6): 44-48. |
[4] | 李序进, 蔡立群, 李海亮. 兰州百合连作土壤碳氮磷化学计量特征及酶活性研究[J]. 中国农学通报, 2021, 37(6): 82-88. |
[5] | 时佳琦, 萨如拉, 令玉, 萨茹拉其其格, 范富, 张雪婷. 盐碱土秸秆添加量对玉米种子萌发及幼苗生长特性的影响[J]. 中国农学通报, 2021, 37(36): 13-18. |
[6] | 方克明, 肖欣, 王美玲, 张露, 汪璐, 秦蕾影, 章明, 江麟, 朱安繁. 农用石灰在酸性及镉污染稻田中试效果[J]. 中国农学通报, 2021, 37(26): 93-97. |
[7] | 贾宽宽, 舒英格, 张忠梁, 王渊, 任明慧. 基于CNKI数据库的茶园土壤酸化文献计量分析[J]. 中国农学通报, 2021, 37(20): 119-125. |
[8] | 周艳, 张聪, 赵丹丹. 食用菌多糖的结构修饰及其修饰后的抗肿瘤活性研究进展[J]. 中国农学通报, 2020, 36(6): 89-92. |
[9] | 丁军, 唐熙雯. 综合降镉技术在重金属轻度污染农田中对稻米镉含量的影响[J]. 中国农学通报, 2020, 36(5): 74-77. |
[10] | 张如明, 李亦然, 李泽东, 曹振, 张永涛. 基于TOPSIS原理的石灰岩山地不同树种景观与生态效益分析[J]. 中国农学通报, 2020, 36(4): 83-89. |
[11] | 胡丹丹, 王惠明, 吴昌强, 胡秋萍, 宋惠洁, 刘金友, 胡惠文. 硼镁钙土壤调理剂对红壤旱地土壤酸化的阻控效果[J]. 中国农学通报, 2020, 36(11): 82-85. |
[12] | 覃肖良,孙梓淳,刘黎明. 广西石灰岩山区土地可持续利用综合评价与诊断[J]. 中国农学通报, 2019, 35(17): 40-47. |
[13] | 覃肖良,吴乐,刘黎明. 石灰岩贫困山区农户土地利用转型影响因素研究[J]. 中国农学通报, 2018, 34(9): 157-164. |
[14] | 张瑞清,杨剑超,张占田,姜学玲,徐维华,孙 晓. 生物炭对酸化土壤锰毒害的缓解效应研究[J]. 中国农学通报, 2018, 34(36): 110-116. |
[15] | 曹胜. 石灰对土壤重金属污染修复的研究进展[J]. 中国农学通报, 2018, 34(26): 109-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||