| [1] | 崔丽娟, 艾思龙. 湿地恢复手册-原则.技术与案例分析[M]. 北京: 中国建筑工业出版社, 2006:14-22. | 
																													
																						| [2] | Gusewell S, Blooens U. Composition of plant species mixtures grown at various N: P ratios and levels of nutrient supply[J]. Basic and Applied Ecology, 2003, 4(5):453-466. doi: 10.1078/1439-1791-00174    
																																					URL
 | 
																													
																						| [3] | 崔丽娟, 李伟, 张曼胤, 等. 不同湿地植物对污水中氮磷去除的贡献[J]. 湖泊科学, 2011, 23(2):203-208. | 
																													
																						| [4] | 黄耀, 张稳, 郑循华, 等. 基于模型和GIS技术的中国稻田甲烷排放估计[J]. 生态学报, 2006, 26(4):980-988. | 
																													
																						| [5] | 倪红伟, 臧淑英, 高亦珂. 三江平原沼泽化草甸小叶章种群地上生物量及其生长速率季节动态的研究[J]. 植物研究, 1996, 16(4):489-495. | 
																													
																						| [6] | 倪红伟. 三江平原典型草甸小叶章种群地上器官生物量及其分层结构[J]. 植物研究, 1996, 16(3):356-362. | 
																													
																						| [7] | 倪红伟, 张兴, 贾利. 三江平原典型草甸小叶章种群地上生物量[J]. 植物研究, 1998, 18(3):328-335. | 
																													
																						| [8] | 倪红伟. 三江平原湿地植物多样性研究[D]. 长春:东北师范大学, 2001. | 
																													
																						| [9] | Koerselman W, Meuleman A F M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33:1441-1450. doi: 10.2307/2404783    
																																					URL
 | 
																													
																						| [10] | 徐坤, 赵青春. 甜椒对不同形态氮素的吸收和分配. 核农学报, 1999, 13(6):339-342. | 
																													
																						| [11] | 董守坤, 刘丽君, 马春梅, 等. 利用15N标记研究铵态氮与硝态氮对大豆的营养作用[J]. 大豆科学, 2012, 31(6):911-914. | 
																													
																						| [12] | 尹丽, 胡庭兴, 刘永安, 等. 施氮量对麻疯树幼苗生长及叶片光合特性的影响[J]. 生态学报, 2011, 31(17):4977-4984. | 
																													
																						| [13] | 李絮花, 杨守祥, 于振文, 等. 有机肥对小麦根系生长及根系衰老进程的影响[J]. 植物营养与肥料学报, 2005, 11(4):467-472. | 
																													
																						| [14] | 胡霭堂. 植物营养学[M]. 北京: 中国农业大学出版社, 2003: 2. | 
																													
																						| [15] | Riitting T, Clough T J, Muller C, et al. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture[J]. Global Change Biology, 2010, 16:530-2542. | 
																													
																						| [16] | Miiller C, Laughlin R J, Christie P, et al. Effects of repeated fertilizer and cattle slurry applications over 38 years on N dynamics in a temperate grassland soil[J]. Soil Biology & Biochemistry, 2011, 43:1362-1371. doi: 10.1016/j.soilbio.2011.03.014    
																																					URL
 | 
																													
																						| [17] | Xu Y Q, He J C, Cheng W X, et al. Natural 15N abundance in soils and plants in relation to N Cycling in a rangeland in Inner Mongolia[J]. Journal of Plant Ecology, 2010, 3(3):201-207. doi: 10.1093/jpe/rtq023    
																																					URL
 | 
																													
																						| [18] | Harrison K A, Bol R, Bardgett R D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen[J]. Soil Biology & Biochemistry, 2008, 40:228-237. doi: 10.1016/j.soilbio.2007.08.004    
																																					URL
 | 
																													
																						| [19] | Friedrich U, Falk K, Bahlmann E, et al. Fate of airborne nitrogen in heathland ecosystems: a 15N tracer study[J]. Global Change Biology, 2011, 17:1549-1559. doi: 10.1111/gcb.2011.17.issue-4    
																																					URL
 |