中国农学通报 ›› 2022, Vol. 38 ›› Issue (31): 83-92.doi: 10.11924/j.issn.1000-6850.casb2021-1093
所属专题: 生物技术
沙刚1(), 阴红彬1, 曹宏杰1,2, 谢立红1, 黄庆阳1, 徐明怡1,2()
收稿日期:
2021-11-15
修回日期:
2022-01-22
出版日期:
2022-11-05
发布日期:
2022-10-27
通讯作者:
徐明怡
作者简介:
沙刚,男,1981年出生,黑龙江哈尔滨人,工程师,学士,主要从事土壤生态学研究。通信地址:150040 黑龙江省哈尔滨市香坊区哈平路103号 黑龙江省科学院生物多样性重点实验室,Tel:0451-58939389,E-mail: 基金资助:
SHA Gang1(), YIN Hongbin1, CAO Hongjie1,2, XIE Lihong1, HUANG Qingyang1, XU Mingyi1,2()
Received:
2021-11-15
Revised:
2022-01-22
Online:
2022-11-05
Published:
2022-10-27
Contact:
XU Mingyi
摘要:
CH4作为一种强效的温室气体对全球气候变暖贡献巨大,森林土壤是重要的大气甲烷汇。明确不同地质年代火山岩母质发育的森林土壤甲烷氧化通量特征,以期为温带森林生态系统碳循环规律研究提供一定的科学依据。以五大连池火山保护区内3座不同地质的年代火山为对象,山口湖保护区内一座海拔高度相似的山丘为对照,采用静态气箱-气相色谱法,分析了甲烷氧化通量及其与环境因子的相关性。结果表明,不同采样点南北坡间土壤总有机碳含量均存在显著差异(P<0.05),老黑山(300年)与东焦得布(17万~19万年)和北格拉球(70万~80万年)之间存在显著差异,呈逐渐增加的趋势;土壤总氮含量除老黑山外,不同坡向间差异显著(P<0.05)。土壤速效养分含量呈逐渐增加的变化趋势且北坡均高于南坡。老黑山、东焦得布、北格拉球和山口湖甲烷氧化通量日变化范围分别为44.58~68.35、108.65~138.23、74.72~118.05、78.26~105.34 µg/(m2·h);上午8:00—10:00左右甲烷氧化通量为全天最大值;甲烷氧化通量24 h平均值东焦得布最高,与其他采样点差异显著(P<0.05)。南北坡向甲烷氧化通量月际变化特征相似,均呈单峰曲线模式,6月甲烷氧化通量达到最大值。东焦得布甲烷年氧化通量高于老黑山和北格拉球,差异显著(P<0.05)。甲烷氧化通量与0~5 cm土壤温度呈显著的指数相关,与0~5 cm土壤含水量呈线性相关。综上所述,火山喷发时间的差异决定了土壤养分含量的差异;长期土壤发育过程导致不同母质的土壤养分含量及理化性质出现趋同性。甲烷氧化通量昼高夜低,土壤发育时间影响甲烷氧化通量,甲烷氧化通量受多种环境因子的综合影响。
中图分类号:
沙刚, 阴红彬, 曹宏杰, 谢立红, 黄庆阳, 徐明怡. 不同地质年代火山森林土壤甲烷氧化通量及其影响因素[J]. 中国农学通报, 2022, 38(31): 83-92.
SHA Gang, YIN Hongbin, CAO Hongjie, XIE Lihong, HUANG Qingyang, XU Mingyi. Methane Oxidation Flux in Volcanic Forest Soil of Different Geological Ages and Its Influencing Factors[J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 83-92.
采样点 | 形成时间 | 植被类型 | 土壤类型 |
---|---|---|---|
老黑山(LHS) | 300年 | 针阔混交林 | 火山灰土、火山石质土 |
东焦得布山(DJDB) | 17万~19万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
北格拉球山(BGLQ) | 70万~ 80万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
山口湖(SKH) | 25亿年 | 落叶阔叶林 | 暗棕壤 |
采样点 | 形成时间 | 植被类型 | 土壤类型 |
---|---|---|---|
老黑山(LHS) | 300年 | 针阔混交林 | 火山灰土、火山石质土 |
东焦得布山(DJDB) | 17万~19万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
北格拉球山(BGLQ) | 70万~ 80万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
山口湖(SKH) | 25亿年 | 落叶阔叶林 | 暗棕壤 |
采样点 | a | b | 参数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | ||||||||||
S | N | S | N | S | N | S | N | |||||
LHS | 18.922 | 13.605 | 0.0513 | 0.0819 | 14 | 0.4268 | 0.6293 | <0.007 | <0.002 | |||
DJDB | 23.663 | 27.042 | 0.1069 | 0.1069 | 14 | 0.7558 | 0.5766 | <0.001 | <0.003 | |||
BGLQ | 27.818 | 25.794 | 0.0748 | 0.1081 | 14 | 0.7014 | 0.8206 | <0.001 | <0.001 | |||
SKH | 28.352 | 27.65 | 0.0835 | 0.0865 | 14 | 0.7403 | 0.5089 | <0.001 | <0.005 |
采样点 | a | b | 参数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | ||||||||||
S | N | S | N | S | N | S | N | |||||
LHS | 18.922 | 13.605 | 0.0513 | 0.0819 | 14 | 0.4268 | 0.6293 | <0.007 | <0.002 | |||
DJDB | 23.663 | 27.042 | 0.1069 | 0.1069 | 14 | 0.7558 | 0.5766 | <0.001 | <0.003 | |||
BGLQ | 27.818 | 25.794 | 0.0748 | 0.1081 | 14 | 0.7014 | 0.8206 | <0.001 | <0.001 | |||
SKH | 28.352 | 27.65 | 0.0835 | 0.0865 | 14 | 0.7403 | 0.5089 | <0.001 | <0.005 |
采样点 | a | b | 参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | |||||||||
S | N | S | N | S | N | S | N | ||||
LHS | 2.0468 | -0.9592 | 13.325 | 54.002 | 14 | 0.3563 | 0.3352 | <0.05 | <0.05 | ||
DJDB | -3.0945 | -2.3355 | 178.01 | 162.69 | 14 | 0.14 | 0.5306 | >0.05 | <0.01 | ||
BGLQ | -4.259 | -1.5426 | 188.57 | 145.54 | 14 | 0.3877 | 0.241 | <0.05 | >0.05 | ||
SKH | -2.4915 | -1.371 | 138.37 | 122.08 | 14 | 0.2776 | 0.1508 | >0.05 | >0.05 |
采样点 | a | b | 参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | |||||||||
S | N | S | N | S | N | S | N | ||||
LHS | 2.0468 | -0.9592 | 13.325 | 54.002 | 14 | 0.3563 | 0.3352 | <0.05 | <0.05 | ||
DJDB | -3.0945 | -2.3355 | 178.01 | 162.69 | 14 | 0.14 | 0.5306 | >0.05 | <0.01 | ||
BGLQ | -4.259 | -1.5426 | 188.57 | 145.54 | 14 | 0.3877 | 0.241 | <0.05 | >0.05 | ||
SKH | -2.4915 | -1.371 | 138.37 | 122.08 | 14 | 0.2776 | 0.1508 | >0.05 | >0.05 |
AP | AK | TOC | TN | NH4+-N | DOC | SMBC | SMBN | |
---|---|---|---|---|---|---|---|---|
L-S | 0.145 | -0.500* | -0.549* | -0.382 | 0.485* | -0.066 | 0.475* | 0.450 |
D-S | -0.164 | -0.260 | -0.567* | -0.338 | 0.848** | -0.078 | 0.375 | 0.264 |
B-S | -0.280 | 0.616** | 0.404 | 0.342 | 0.186 | 0.905** | 0.803** | 0.523* |
S-S | -0.669** | -0.137 | -0.686** | -0.724** | 0.276 | 0.548* | 0.579* | 0.135 |
L-N | -0.154 | -0.147 | 0.054 | -0.054 | 0.320 | 0.047 | 0.280 | 0.380 |
D-N | -0.575* | 0.073 | -0.564* | -0.493 | 0.080 | 0.670** | -0.380 | -0.378 |
B-N | -0.472* | -0.458 | -0.381 | -0.438 | 0.040 | 0.032 | 0.082 | 0.027 |
S-N | -0.317 | -0.798** | -0.396 | -0.457 | 0.308 | -0.339 | -0.621* | -0.552* |
AP | AK | TOC | TN | NH4+-N | DOC | SMBC | SMBN | |
---|---|---|---|---|---|---|---|---|
L-S | 0.145 | -0.500* | -0.549* | -0.382 | 0.485* | -0.066 | 0.475* | 0.450 |
D-S | -0.164 | -0.260 | -0.567* | -0.338 | 0.848** | -0.078 | 0.375 | 0.264 |
B-S | -0.280 | 0.616** | 0.404 | 0.342 | 0.186 | 0.905** | 0.803** | 0.523* |
S-S | -0.669** | -0.137 | -0.686** | -0.724** | 0.276 | 0.548* | 0.579* | 0.135 |
L-N | -0.154 | -0.147 | 0.054 | -0.054 | 0.320 | 0.047 | 0.280 | 0.380 |
D-N | -0.575* | 0.073 | -0.564* | -0.493 | 0.080 | 0.670** | -0.380 | -0.378 |
B-N | -0.472* | -0.458 | -0.381 | -0.438 | 0.040 | 0.032 | 0.082 | 0.027 |
S-N | -0.317 | -0.798** | -0.396 | -0.457 | 0.308 | -0.339 | -0.621* | -0.552* |
[1] |
DENG Y, CUI X, LUKE C, et al. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau[J]. Environmental microbiology reports, 2013, 5:566-574.
doi: 10.1111/1758-2229.12046 pmid: 23864571 |
[2] | FORSTER P, RAMASWAMY V, ARTAXO P, et al. Changes in atmospheric constituents and in radiative forcing[A]//. SOLOMON Sed. Climate change 2007: The physical science basis: Working group I to the fourth assessment report of the intergovernmental panel on climate change[M].Cambridge, UK: Cambridge University Press, 2007:129-234. |
[3] | STOCKER T, QIN D, PLATTNER G, et al. Climate Change 2013-The physical science basis:working group I. Contribution to the fifth assessment report of the Intergovernmental panel on climate change[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2014. |
[4] |
NAZARIES L, MURRELL J, MILLARD P, et al. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions[J]. Environmental microbiology, 2013, 15:2395-2417.
doi: 10.1111/1462-2920.12149 pmid: 23718889 |
[5] | KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in microbiology, 2015,6. |
[6] | BORKEN W, BRUMME R. Methane uptake by temperate forest soils: functioning and management of European beech ecosystems[J]. Ecological studies, 2009, 208:369-385. |
[7] | KERRY R G, PATRA S, GOUDA S, et al. Microbes and their role in drought tolerance of agricultural food crops[J]. Microbial biotechnology, 2018,253-273. |
[8] |
AMIN A, AHMED I, SALAM N, et al. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan[J]. Microbial ecology, 2017, 74(1):116-127.
doi: 10.1007/s00248-017-0930-1 pmid: 28105510 |
[9] |
SHMAREVA M, DORONINA N, TARLACHKOV S, et al. Methylophaga muralis Bur 1, a haloalkaliphilic methylotroph isolated from the Khilganta soda lake (southern Transbaikalia, Buryat Republic)[J]. Microbiology, 2018, 87(1):33-46.
doi: 10.1134/S0026261718010162 URL |
[10] | KOU Y, LI J, WANG Y, et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils[J]. Soil biology and biochemistry, 2017,111,104-114. |
[11] |
WANG Y, CHEN H, ZHU Q, et al. Soil methane uptake by grasslands and forests in China[J]. Soil biology and biochemistry, 2014, 74:70-81.
doi: 10.1016/j.soilbio.2014.02.023 URL |
[12] |
MARTINS C, NAZARIES L, MACDONALD C, et al. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem[J]. Soil biology and biochemistry, 2015, 86:5-16.
doi: 10.1016/j.soilbio.2015.03.012 URL |
[13] |
PRAEG N, WAGNER A, ILLMER P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils[J]. Plant and soil, 2017, 410:193-206.
doi: 10.1007/s11104-016-2993-z URL |
[14] |
LIVESLEY S, KIESE R, MIEHLE P, et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations[J]. Global change biology, 2009, 15:425-440.
doi: 10.1111/j.1365-2486.2008.01759.x URL |
[15] | CHIRI E, NAUER P, RAINER E, et al. High temporal and spatial variability of atmospheric-methane oxidation in Alpine glacier-forefield soils[J]. Applied environmental microbiology, 2017, 83(18). |
[16] |
HO A, DE ROY K, THAS O, et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity[J]. ISME Journal, 2014, 8:1945-1948.
doi: 10.1038/ismej.2014.74 pmid: 24785289 |
[17] |
URBANOVA M, SNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil biology and biochemistry, 2015, 84:53-64.
doi: 10.1016/j.soilbio.2015.02.011 URL |
[18] |
ARONSON E, ALLISON S, HELLIKER B. Environmental impacts on the diversity of methane-cycling microbes and their resultant function[J]. Frontiers in microbiology, 2013, 4:225-240.
doi: 10.3389/fmicb.2013.00225 pmid: 23966984 |
[19] | WEST A, BROOKS P, FISK M, et al. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem[J]. Biogeochemistry, 1999, 45(3):243-264. |
[20] | 李齐, 陈文寄, 李大明, 等. 五大连池地区火山岩年代学研究[J]. 地质评论, 1999, 45(8):393-399. |
[21] | WOOD C. Volcanoes of North America: United States and Canada[M]. New York: Cambridge University Press,1992. |
[22] | SCHAETZL R, ANDERSON S. Soils: Genesis and geomorphology[M]. New York: Cambridge University Press, 2005. |
[23] | 田慎重, 宁堂原, 迟淑筠, 等. 不同耕作措施的温室气体排放日变化及最佳观测时间[J]. 生态学报, 2012, 32(3):879-888. |
[24] | 齐玉春, 罗辑, 董云社, 等. 贡嘎山山地暗针叶林带森林土壤温室气体N2O和CH4排放研究[J]. 中国科学D辑, 2002, 32(11):934-941. |
[25] | 周存宇, 张德强, 王跃思, 等. 鼎湖山针阔叶混交林地表温室气体排放的日变化[J]. 生态学报, 2004, 24(8):1738-1741. |
[26] | 庄静静, 张劲松, 孟平, 等. 华北低山丘陵区人工林土壤CH4通量测定代表性时段研究[J]. 生态环境学报, 2015(11):1791-1798. |
[27] |
XIAO D, WANG M, WANG Y, et al. Fluxes of soil carbon dioxide, nitrous oxide and fire damp in broad- leaved/Korean pine forest[J]. Journal of forestry research, 2004, 15(2):107-112.
doi: 10.1007/BF02856743 URL |
[28] | 杨小丹, 马秀枝, 周梅, 等. 寒温带大兴安岭渐伐林森林土壤CH4通量的研究[J]. 内蒙古农业大学学报, 2010, 31(3):52-59. |
[29] |
BORKEN W, DAVIDSON E, SAVAGE K, et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil[J]. Soil biology & biochemistry, 2006, 38(6):1388-1395.
doi: 10.1016/j.soilbio.2005.10.011 URL |
[30] | 肖冬梅, 王姬. 长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究[J]. 应用生态学报, 2004, 15(10):1855-1859. |
[31] | 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 2010, 30(15):4075-4084. |
[32] |
NOLL M, FRENZEL P, CONRAD R. Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing[J]. Fems microbiology ecology, 2008, 65:125-132.
doi: 10.1111/j.1574-6941.2008.00497.x pmid: 18544098 |
[33] | 周存宇, 周国逸, 王迎红, 等. 鼎湖山针阔叶混交林地表CH4通量[J]. 生态环境, 2005, 14(3):333-335. |
[34] | DONG Y, SCHARFFEL D, LOBERT J, et al. Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers[J]. Tellus, 1998, 50:243-252. |
[35] |
刘玲玲, 刘允芬, 温学发, 等. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量[J]. 植物生态学报, 2008, 32(2):431-439.
doi: 10.3773/j.issn.1005-264x.2008.02.022 |
[36] | 何介南, 谢寄托, 肖毅峰, 等. 莽山土壤有机碳及其空间分布格局[J]. 中南林业科技大学学报, 2014, 34(4):72-76. |
[37] |
TATE K. Soil methane oxidation and land-use change-from process to mitigation[J]. Soil biology and biochemistry, 2015, 80:260-272.
doi: 10.1016/j.soilbio.2014.10.010 URL |
[38] | SINGH J, SINGH S, RAGHUBANSHI A, et al. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils[J]. Plant & soil, 1997, 196(1):115-121. |
[39] |
NESBIT S, BREITENBECK G. A laboratory study of factors influencing methane uptake by soils[J]. Agriculture, ecosystems & environment, 1992, 41(1):39-54.
doi: 10.1016/0167-8809(92)90178-E URL |
[40] |
HÜTSCH B. Methane oxidation in non-flooded soils as affected by crop production- invited paper[J]. European journal of agronomy, 2001, 14(4):237-260.
doi: 10.1016/S1161-0301(01)00110-1 URL |
[1] | 翁晓虹, 隋心. 基于Web of Science的森林土壤微生物多样性研究趋势分析[J]. 中国农学通报, 2022, 38(10): 157-164. |
[2] | 任煜堃. 山西省森林土壤因子空间变异特征[J]. 中国农学通报, 2021, 37(32): 42-50. |
[3] | 乔志文. 甜菜褐斑病发生时间动态规律研究乔志文[J]. 中国农学通报, 2019, 35(6): 83-88. |
[4] | 王利民,刘佳,季富华,姚保民,杨福刚. 中国小麦面积种植结构时空动态变化分析[J]. 中国农学通报, 2019, 35(18): 12-24. |
[5] | 张红梅,余砚碧,计思贵,王 燕,杨海林,吴 迪,陈福寿,张立猛. 烤烟-油菜轮作田昆虫群落结构及时间动态[J]. 中国农学通报, 2019, 35(14): 122-128. |
[6] | 李淑英,朱加保,路献勇,崔金杰,马 艳,雒珺瑜,程福如. 皖西南春棉田主要害虫和天敌种群时序动态格局[J]. 中国农学通报, 2016, 32(14): 68-74. |
[7] | 葛萍 王伟波 朱晓林 达良俊. 鹞落坪4种典型植被类型土壤活性碳、氮特征比较[J]. 中国农学通报, 2014, 30(4): 23-28. |
[8] | 郭艳娜,霍沁建 袁 玲. 森林土壤肥力概述[J]. 中国农学通报, 2004, 20(3): 143-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||