[1] |
XING H W, DU R P, ZHAO F K, et al. Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105[J]. International journal of biological macromolecules, 2018, 112:1208-1216.
doi: 10.1016/j.ijbiomac.2018.02.068
URL
|
[2] |
ZHAO D, JIANG J, DU R, et al. Purification and characterization of an exopolysaccharide from Leuconostoc lactis L2[J]. International journal of biological macromolecules, 2019, 139:1224-1231.
doi: 10.1016/j.ijbiomac.2019.08.114
URL
|
[3] |
PATTEN D A, LAWS A P. Lactobacillus-produced exopolysaccharides and their potential health benefits: a review[J]. Beneficial microbes, 2015, 6(4):457-471.
doi: 10.3920/BM2014.0117
pmid: 25567540
|
[4] |
NGUYEN P T, NGUYEN T T, BUI D C, et al. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications[J]. Aims microbiology, 2020, 6(4):451-469.
doi: 10.3934/microbiol.2020027
URL
|
[5] |
CHENG X, HUANG L, LI K T. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis[J]. World journal of microbiology & biotechnology, 2019, 35(5):68.
doi: 10.1007/s11274-019-2645-6
|
[6] |
WANG Y, DU R, QIAO X, et al. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2[J]. International journal of biological macromolecules, 2020, 142:73-84.
doi: 10.1016/j.ijbiomac.2019.09.071
URL
|
[7] |
CUI Y H, JIANG X, HAO M Y, et al. New advances in exopolysaccharides production of Streptococcus thermophilus[J]. Archives of microbiology, 2017, 199(6):799-809.
doi: 10.1007/s00203-017-1366-1
URL
|
[8] |
何进, 徐思杨, 刘波, 等. 乳酸菌在农业和食品加工中的应用研究进展[J]. 微生物学杂志, 2022, 42(4):1-11.
|
[9] |
JIANG B, WANG L L, ZHU M S H, et al. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system[J]. Lwt-food science and technology, 2021, 147:116-117.
|
[10] |
WU J S, HAN X P, YE M Z, et al. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability[J]. Critical reviews in food science and nutrition, 2022, 207:317-332.
|
[11] |
AHMAD W, BOYAJIAN J L, ABOSALHA A, et al. High-molecular-weight dextran-type exopolysaccharide produced by the novel Apilactobacillus waqarii improves metabolic syndrome: in vitro and in vivo analyses[J]. International journal of molecular sciences, 2022, 23(20):12692.
doi: 10.3390/ijms232012692
URL
|
[12] |
ABDALLA A K, AYYASH M M, OLAIMAT A N, et al. Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity[J]. Frontiers in microbiology, 2021, 12:664395.
doi: 10.3389/fmicb.2021.664395
URL
|
[13] |
XU Y M, CUI Y L, YUE F F, et al. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry[J]. Food hydrocolloids, 2019, 94:475-499.
doi: 10.1016/j.foodhyd.2019.03.032
URL
|
[14] |
LI B L, DU P, SMITH E E, et al. In vitro and in vivo evaluation of an exopolysaccharide produced by Lactobacillus helveticus KLDS1.8701 for the alleviative effect on oxidative stress[J]. Food & function, 2019, 10(3):1707-1717.
|
[15] |
BERTHOLD-PLUTA A M, ST PLUTA A, GARBOWSKA M, et al. Exopolysaccharide-producing lactic acid bacteria- health-promoting properties and application in the dairy industry[J]. Advancements of microbiology, 2019, 58(2):191-204.
doi: 10.21307/PM-2019.58.2.191
URL
|
[16] |
SHAO L, WU Z J, ZHANG H, et al. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5[J]. Carbohydrate polymers, 2014, 107:51-56.
doi: 10.1016/j.carbpol.2014.02.037
URL
|
[17] |
LANEUVILLE S I, TURGEON S L. Microstructure and stability of skim milk acid gels containing an anionic bacterial exopolysaccharide and commercial polysaccharides[J]. International dairy journal, 2014, 37(1):5-15.
doi: 10.1016/j.idairyj.2014.01.014
URL
|
[18] |
ANDREA F, ELENA B, VINCENZO C, et al. Feeding Lactic acid bacteria with different sugars: Effect on exopolysaccharides (eps) production and their molecular characteristics[J]. Foods, 2023, 12(1):215.
doi: 10.3390/foods12010215
URL
|
[19] |
PARIA R V, REZA E D M, BAGHER H N M, et al. Biodiversity of exopolysaccharide-producing lactic acid bacteria from Iranian traditional Kishk and optimization of EPS yield by Enterococcus spp[J]. Food bioscience, 2022, 49:101869.
doi: 10.1016/j.fbio.2022.101869
URL
|
[20] |
胡盼盼. 乳酸菌胞外多糖发酵条件优化及抗肿瘤活性的研究[J]. 中国酿造, 2020, 39(8):187-92.
|
[21] |
梁增澜, 李慧, 张睿, 等. 植物乳杆菌KF5胞外多糖合成条件的优化研究[J]. 食品研究与开发, 2019, 40(3):14-8.
|
[22] |
STOJILKOVSKI K, URANIC N, KOLAR D, et al. Simple method for the determination of polysaccharides in herbal syrup[J]. Journal of carbohydrate chemistry, 2018, 37(7-8):431-441.
doi: 10.1080/07328303.2019.1567754
URL
|
[23] |
YUE F F, ZHANG J R, XU J X, et al. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method[J]. Frontiers in nutrition, 2022, 9:963318.
doi: 10.3389/fnut.2022.963318
URL
|
[24] |
曹永强, 王辑, 赵笑, 等. 植物乳杆菌YW11生产胞外多糖的发酵条件研究[J]. 食品科学技术学报, 2016, 34(1):42-49.
|
[25] |
唐华英, 罗欣锦, 张云野, 等. 假肠膜明串珠菌GX-3产胞外多糖条件优化及其理化性质研究[J]. 中国乳品工业, 2022, 50(8):15-9.
|
[26] |
刘丽娜, 郭尚旭, 姜静, 等. 融合魏斯氏菌(Weissella confusa)XG-3产胞外多糖条件研究[J]. 黑龙江大学工程学报, 2020, 11(3):85-91.
|
[27] |
HERNANDEZ-ROSAS F, CASTILLA-MARROQUIN J D, LOEZA-CORTE J M, et al. The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance[J]. Revista mexicana de ingenieria quimica, 2021, 20(3):1-21.
|
[28] |
王明哲, 杨颖, 唐伟敏, 等. 戊糖乳杆菌YY112产胞外多糖的发酵工艺条件优化[J]. 浙江农业学报, 2020, 32(2):327-336.
doi: 10.3969/j.issn.1004-1524.2020.02.17
|
[29] |
季海蕊, 郭尚旭, 姜静, 等. 乳酸明串珠菌(Leuconostoc lactis)L2体内耐受性及产胞外多糖条件研究[J]. 黑龙江大学(自然科学学报), 2020, 37(5):580-587.
|
[30] |
张文平, 赵英杰, 罗晟, 等. 高产胞外多糖植物乳杆菌筛选及其发酵工艺优化[J]. 食品与发酵工业, 2019, 45(21):38-45.
doi: 10.13995/j.cnki.11-1802/ts.021589
|
[31] |
冯小婉, 夏永军, 王光强, 等. 产胞外多糖植物乳杆菌的筛选及粗多糖的活性研究[J]. 食品科学, 2016, 37(13):125-129.
doi: 10.7506/spkx1002-6630-201613022
|
[32] |
黄君阳. 一株高产胞外多糖植物乳杆菌的筛选及其发酵条件优化[J]. 食品科技, 2017(12):29-33.
|