[1] |
符峰华. 联合国号召打造零污染地球[J]. 生态经济, 2018(2):2-5.
|
[2] |
张昊. 抗生素及其耐药性在畜禽粪便-土壤-蔬菜中的传播和转移[D]. 郑州: 河南师范大学, 2018.
|
[3] |
谷艳茹. 中小型畜禽养殖场粪污及粪肥施用农田土壤中耐药基因污染特征[D]. 哈尔滨: 东北农业大学, 2020(4).
|
[4] |
张天怡. 天山南麓绵羊粪便和土壤中细菌耐药基因流行调查[D]. 哈尔滨: 东北农业大学, 2021(3).
|
[5] |
LIU W, LING N, GUO J, et al. Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years[J]. Journal of hazardous materials, 2021, 401:123399.
|
[6] |
ZHANG Y J, HU H W, GOU M, et al. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics[J]. Environmental pollution, 2017, 231(2):1621-1632.
|
[7] |
WANG F, XU M, STEDTFELD R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental science & technology, 2018, 52(22):13037-13046.
|
[8] |
FAHRENFELD N, KNOWLTON K, KROMETIS L A, et al. Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: Field-scale mass balance approach[J]. Environmental science & technology, 2014, 48(5):2643-2650.
|
[9] |
钱勋. 好氧堆肥对畜禽粪便中抗生素抗性基因的削减条件探索及影响机理研究[J]. 杨凌:西北农林科技大学, 2016(3).
|
[10] |
杨凤霞. 猪场粪污及其处置过程中耐药基因的扩散机制及归趋研究[D]. 北京: 中国农业科学院, 2019.
|
[11] |
CHANG F Y, SIU L K, FUNG C P, et al. Diversity of SHV and TEM beta-lactamases in Klebsiella pneumoniae: Gene evolution in Northern Taiwan and two novel beta-lactamases, SHV-25 and SHV-26[J]. Antimicrob agents chemother, 2001, 45(9):2407-2413.
|
[12] |
FENG C, WEN P, XU H, et al. Emergence and comparative genomics analysis of extended-spectrum-β-lactamase-producing Escherichia coli carrying mcr-1 in fennec fox imported from Sudan to China[J]. mSphere, 2019, 4(6):e00732-19.
|
[13] |
AMINOV R I, CHEE-SANFORD J C, GARRIGUES N, et al. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria[J]. Applied and environmental microbiology, 2002, 68(4):1786-1793.
doi: 10.1128/AEM.68.4.1786-1793.2002
pmid: 11916697
|
[14] |
AMINOV R I, GARRIGUES-JEANJEAN N, MACKIE R I. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins[J]. Applied & environmental microbiology, 2001, 67(1):22-32.
|
[15] |
PEI R, KIM S C, CARLSON K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water research, 2006, 40(12):2427-2435.
pmid: 16753197
|
[16] |
KEHRENBERG C, SCHWARZ S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates[J]. Antimicrob agents chemother, 2006, 50(4):1156-1163.
|
[17] |
TANG Y, DAI L, SAHIN O, et al. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter[J]. The journal of antimicrobial chemotherapy, 2017, 72(6):1581-1588.
doi: 10.1093/jac/dkx023
pmid: 28186558
|
[18] |
CLOECKAERT A, BAUCHERON S, FLAUJAC G, et al. Plasmid-mediated florfenicol resistance encoded by the floR gene in Escherichia coli isolated from cattle[J]. Antimicrob agents chemother, 2000, 44(10):2858-2860.
doi: 10.1128/AAC.44.10.2858-2860.2000
pmid: 10991873
|
[19] |
ROBERTS M C, CHUNG W O, ROE D, et al. Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes[J]. Antimicrob agents chemother, 1999, 43(6):1367-1372.
|
[20] |
BEN W, WANG J, PAN X, et al. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China[J]. Chemosphere, 2017, 167:262-268.
|
[21] |
张荣民. 肉鸡产业链NDM和MCR-1阳性大肠杆菌分子流行病学研究[D]. 北京: 中国农业大学, 2017.
|
[22] |
闫书海. 畜禽养殖废水/粪便中典型抗药基因的调查研究[D]. 杭州: 浙江大学, 2013.
|
[23] |
汤景元, 王红宁, 张鹏举, 等. 95个猪场大肠杆菌耐药表型及氨基糖苷类药物耐药基因型调查[J]. 畜牧兽医学报, 2008(4):472-477.
|
[24] |
ZHAO S, MUKHERJEE S, LI C, et al. Cloning and expression of novel aminoglycoside phosphotransferase genes from campylobacter and their role in the resistance to six aminoglycosides[J]. Antimicrob agents chemother, 2017, 62(1):e01682-17.
|
[25] |
王玲飞. 鸭源大肠杆菌tetM基因的检测及其传播扩散机制[D]. 郑州: 河南农业大学, 2014.
|
[26] |
汪涛, 杨再福, 陈勇航, 等. 磺胺类抗性基因的产生及演变研究进展[J]. 环境污染与防治, 2017(11):1251-1255.
|
[27] |
张之文. PCR技术检测猪源沙门氏菌链霉素、卡那霉素耐药基因(aadA、aadB)的研究[D]. 雅安: 四川农业大学, 2003.
|
[28] |
荆炜. 革兰氏阴性菌中tet(A)基因突变体的检测、定位及遗传环境分析[D]. 郑州: 河南农业大学, 2018.
|
[29] |
SCHMITT H, STOOB K, HAMSCHER G, et al. Tetracyclines and tetracycline resistance in agricultural soils: Microcosm and field studies[J]. Microbial ecology, 2006, 51(3):267-276.
pmid: 16598633
|
[30] |
WANG M, SUN Y, LIU P, et al. Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms[J]. Environmental science and pollution research, 2017, 24(26):20949-20958.
|
[31] |
蔡建星. 新疆猪源葡萄球菌cfr和fexA基因及其遗传元件的检测分析[D]. 乌鲁木齐: 新疆农业大学, 2017.
|
[32] |
PENG S, FENG Y, WANG Y, et al. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of hazardous materials, 2017, 340:16-25.
|
[33] |
MACEDO G, HERNANDEZ-LEAL L, VAN DER MAAS P, et al. The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches[J]. Science of the total environment, 2020, 737:139563.
|
[34] |
杨保伟. 食源性沙门氏菌特性及耐药机制研究[D]. 杨凌: 西北农林科技大学, 2010.
|
[35] |
佟盼盼. 鸡粪便菌耐药基因及其产ESBLs大肠杆菌耐药性的研究[D]. 长春: 吉林大学, 2015.
|
[36] |
MARTI R, SCOTT A, TIEN Y C, et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest[J]. Applied & environmental microbiology, 2013, 79(18):5701.
|
[37] |
罗永乾. 动物源大肠杆菌、沙门氏菌和金黄色葡萄球菌耐药表型与氯霉素类抗菌药物耐药基因型的研究[D]. 重庆: 西南大学, 2017.
|