摘要: 果聚糖是由蔗糖与一个或多个果糖基相连接的聚合物,是一类重要的碳水化合物和渗透调节物质,可提高植物的抗逆性;果聚糖还是一类重要的功能性食品,对人体健康有多种促进作用。植物是果聚糖的主要来源,其合成过程涉及到多种果糖基转移酶,不同的果糖基转移酶组合形成不同类型的果聚糖。较为系统地综述了高等植物果聚糖合成的代谢路径、相关基因、果聚糖的功能及应用前景等方面的研究进展
中图分类号:
李慧娟,孙建全,李俊峰. 高等植物果聚糖合成途径、相关基因和功能的研究进展[J]. 中国农学通报, 2007, 23(9): 86-86.
Li Huijuan, Sun Jianquan, Li Junfeng. Research Advances of Fructan Biosynthesis, Relevant Genes and its Function in Higher Plants[J]. Chinese Agricultural Science Bulletin, 2007, 23(9): 86-86.
[1] van Laere A and van den Ende W. Inulin metabolism in dicots: chicory as a model system. Plant Cell and Environ, 2002, 25:803-813. [2] Hisano H, Kanazawa A, Kawakami A, et al. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci, 2004, 167:861-868. [3] Roover D J, van den Branden K, van Laere A, et al. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 2000, 210:808-814. [4] 张慧,董伟,周骏马,等.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育.生物工程学报,1998,2:181-186. [5] Ritsema T and Smeekens S C M. Fructans: beneficial for plants and humans. Curr Opin Plant Biol, 2003, 6:223-230. [6] Cairns A J. Fructan biosynthesis in transgenic plants. J Exp Bot, 2003,54(382):549-567. [7] Hellwege E M, Maik R, Dominique G, etc. Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett, 1998, 427:25-28. [8] van den Ende W, van Wonterghem D, Dewil E, etc. Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus L.). Physiologia Plantarum, 1996a,98:455-466. [9] van den Ende W, van Wonterghem D, Verhaert P, etc. Purification and characterization of fructan: fructan fructosyltransferase from chicory (Cichorium intybus L.) roots. Planta, 1996b, 199:493-502. [10] Koops A J and Jonker H H. Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus Colombia. II. Purification of sucrose: sucrose 1-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose: sucrose 1-fructosyltransferase and fructan: fructan 1-fructosyltransferase. Plant Physiol, 1996, 110:1167-1175. [11] van der Meer I M, Koops A J, Hakkert J C, et al. Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J, 1998, 15(4):489-500. [12] Hellwege E M, Czapla S, Jahnke A, et al. Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Nat Acad Sci, 2000, 97: 8699-8704. [13] Vijn I and Smeekens S. Fructan: more than a reserve carbohydrate?. Plant Physiol, 1999, 120:351-359. [14] Shiomi N. Purification and characterization of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.). Carbohydr Res, 1981,96:281-292. [15] Vijn I, van D A, Sprenger N, et al. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan: fructan 6G- fructosyltransferase. J Plant, 1997,11:387-398. [16] Pavis N, Boucaud J, Prud M P. Fructan and fructan metabolizing enzymes in leaves of Lolium perenne. New Phytol, 2001, 150:97-109. [17] Sprenger N, Bortlik K, Brandt A, et al. Purification, cloning and functional expression of sucrose: fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc Natl Acad Sci, 1995,92:11652-11656. [18] Kawakami A and Yoshida M. Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotechnol Biochem, 2002,66:2297-2305. [19] Sprenger N, Schellenbaum L, van Dun K, et al. Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose: fructan 6-fructosyltransferase. FEBS Lett, 1997, 400:355-358. [20] Ritsema T and Smeekens S C M. Engineering fructan metabolism in plants. J Plant Physiol, 2003,160:811-820. [21] van den Ende W, Michiels A, van Wonterghem D, et al. Cloning, developmental and tissue-specific expression of sucrose: sucrose 1-fructosyltransferase from Taraxacum officinale. Fructan localization in roots. Plant Physiol, 2000,123:71-79. [22] Hellwege E M, Gritscher D, Willmitzer L, et al. Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose: sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. J Plant, 1997,12:1057-1065. [23] Li H J, Yang A F, Zhang X C, et al. Improving freezing tolerance of transgenic tobacco expressing sucrose : sucrose 1-fructosyltransferase from Lactuca sativa. Plant Cell Tiss Organ Cult, 2007,89:37-48. [24] Livingston D P and Henson C A. Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol, 1998,116:403-408. [25] Wang N and Nobel P S. Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiol, 1998,116(2):709-714. [26] Altenbach D, Nüesch E, Meyer A D, et al. The large subunit determines catalytic specificity of barley sucrose: fructan 6-fructosyltransferase and fescue sucrose: sucrose 1-fructosyltransferase. FEBS Lett, 2004, 567:214-218. [27] Ritsema T, Verhaar A, Vijn I, et al. Fructosyltransferase mutants specify a function for the β-fructosidase motif of the sucrose-binding box in specifying the fructan synthesized. Plant Mol Biol, 2004,54:853-863. [28] Ritsema T, Verhaar A, Vijn I, et al. Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan: fructan 6G-fructosyltransferase (6G-FFT) in product formation. Plant Mol Biol, 2005,58:597-607. [29] Altenbach D, Nüesch E, Ritsema T, et al. Mutational analysis of the active center of plant fructosyltransferase: festuca 1-SST and barley 6-SFT. FEBS Lett, 2005,579:4647-4653. [30] Pons T, Naumoff D G, Fleites M C, et al. Three acid residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, 68. Proteins, 2004,54:424-432. [31] Sévenier R, Hall R D, van der Meer I M, et al. High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol, 1998, 16:843-846. [32] Elizabeth A H P, Ebskamp M J M, Paul M J, et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995,107:125-130. [33] Elizabeth A H P, Norman T, Tobin S, et al. Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem, 1999,37:313-317. [34] Konstantinova T, Parvanova D, Atanassov A, et al. Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci, 2002,163:157-164. [35] Knipp G and Honermeier B. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. Plant Physiol, 2006,163:1-6. [36] 李慧娟,尹海英,张学成,等.转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性.山东大学学报(理学版),2007,42(1):89-94. [37] Parvanova D, Ivanov S, Konstantinova T, et al. Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem, 2004a,42:57-63. [38] Parvanova D, Popova A, Zaharieva I, et al. Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica, 2004b,42:179-185. [39] Hincha D K, Hellwege E M, Heyer A G, et al. Plant fructan stabilize phosphatidycholine liposomes during freeze-drying. Eur J Biochem, 2000,267:535-540. |
[1] | 王莹, 乔晓军, 姚世元, 王志彬. 基于阿里云的无土栽培营养液信息采集系统[J]. 中国农学通报, 2022, 38(28): 150-155. |
[2] | 弓德强, 李敏, 高兆银, 杨衍, 谷会, 胡美姣. 低温结合GABA处理对樱桃番茄果实采后品质的影响[J]. 中国农学通报, 2021, 37(36): 54-60. |
[3] | 姚利, 辛淑荣, 赵自超. 畜禽粪便基质化利用典型技术模式研究进展[J]. 中国农学通报, 2021, 37(1): 90-93. |
[4] | 邱彩虹,苏文青,陈家明,王伟宏,刘海山. 基于WiFi的室内智能蔬菜无土栽培结构设计[J]. 中国农学通报, 2019, 35(4): 125-129. |
[5] | 韩佳佳,季延海,刘海河,武占会,刘明池. 不同黄瓜品种对封闭式基质槽培系统的适应性研究[J]. 中国农学通报, 2018, 34(31): 53-59. |
[6] | 杨圆圆,赵伟,刘梦龙,蒋丽媛,唐磊,杨兆森. 环境对不同果色樱桃番茄生长发育、品质及产量的影响[J]. 中国农学通报, 2018, 34(25): 52-56. |
[7] | 郑洪波,乔江飞,耿庆龙,郑 重. 智能温室中不同基质配方对草莓产量和品质的影响[J]. 中国农学通报, 2017, 33(19): 65-69. |
[8] | 吕晓惠,杨 宁,李海燕,李絮花,王克安. 菌渣部分替代草炭对樱桃番茄生长及养分吸收的影响研究[J]. 中国农学通报, 2016, 32(4): 63-67. |
[9] | 冀春花 林升强 黄露茹 史欧阳 庄令 麦全法. 叶面肥对无土栽培樱桃番茄性状的影响及产量与植株性状的数学模型研究[J]. 中国农学通报, 2014, 30(4): 175-178. |
[10] | 谢雯琦 苏慧慧 黎振兴 李植良 孙保娟 李涛. 番茄‘黄樱桃-2号’再生体系研究[J]. 中国农学通报, 2014, 30(10): 129-134. |
[11] | 肖春玲 李桂峰 尉丰婵 王婷婷. 樱桃番茄果酒加工工艺技术的研究[J]. 中国农学通报, 2011, 27(2): 420-423. |
[12] | 尹秀丽,张喜春,范双喜,谷建田,陈静,刘艳梅,孙玉娇. 设施番茄无土栽培N、P、K养分变化动态监测[J]. 中国农学通报, 2010, 26(6): 157-161. |
[13] | 林碧英,张瑜,毛美华. 不同施肥水平对温室樱桃番茄果实品质的影响[J]. 中国农学通报, 2010, 26(4): 137-141. |
[14] | 任晓平 张喜春 谷建田 孙玉娇 刘艳梅. 无土栽培番茄果实N养分变化动态[J]. 中国农学通报, 2010, 26(20): 275-278. |
[15] | 杨浩,王百田,武晶. 不同无土栽培基质对高羊茅生长的影响[J]. 中国农学通报, 2009, 25(7): 118-121. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 252
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||