欢迎访问《中国农学通报》,

中国农学通报 ›› 2024, Vol. 40 ›› Issue (36): 87-94.doi: 10.11924/j.issn.1000-6850.casb2024-0351

• 资源·环境·生态·土壤 • 上一篇    下一篇

基于主成分和聚类分析对长沙市不同土地利用方式下耕地土壤肥力的评价

胡明勇1(), 冯秋分2(), 朱坚3, 任正伟1, 刘苏1, 易展平1, 吴宇辉4   

  1. 1 长沙市农业技术推广中心,长沙 410006
    2 湖南省土壤肥料研究所,长沙 410125
    3 湖南省农业环境生态研究所,长沙 410125
    4 西南大学西塔学院,重庆 400715
  • 收稿日期:2024-05-21 修回日期:2024-10-15 出版日期:2024-12-25 发布日期:2024-12-23
  • 通讯作者:
    冯秋分,女,1986年出生,四川遂宁人,助理研究员,博士,研究方向:土壤环境。通信地址:410125 湖南省长沙市芙蓉区远大二路730号,Tel:0731-84691343,E-mail:
  • 作者简介:

    胡明勇,男,1980年出生,重庆丰都人,高级农艺师,研究方向:土肥水技术推广。通信地址:410125 湖南省长沙市岳麓区桐梓坡西路138号,Tel:0731-85521261,E-mail:

  • 基金资助:
    湖南省农业科技创新资金项目“铁基富硫材料作用下土壤镉砷有效性与养分供应能力的关联”(2023CX100); 长沙市化肥减量增效与耕地质量保护提升专项“粮食生产‘四高’试验示范及农业技术推广”(长财农指〔2023〕77号)

Comprehensive Evaluation of Soil Fertility of Different Land Use Patterns of Changsha Arable Land Based on Principal Component and Cluster Analysis

HU Mingyong1(), FENG Qiufen2(), ZHU Jian3, REN Zhengwei1, LIU Su1, YI Zhanping1, WU Yuhui4   

  1. 1 Changsha Quality Monitoring Centre of Agricultural Products, Changsha 410006
    2 Hunan Soil and Fertilizer Institute, Changsha 410125
    3 Hunan Institute of Agro-Environment and Ecology, Changsha 410125
    4 Westa College, Southwest University, Chongqing 400715
  • Received:2024-05-21 Revised:2024-10-15 Published:2024-12-25 Online:2024-12-23

摘要:

本研究旨在定量评估长沙市不同土地利用方式对土壤肥力特征的影响。2023年3—9月,以水田、茶园、果园与菜园为试验对象,采集并分析各采样点土壤pH、有机质、全氮、碱解氮、有效磷、速效钾与缓效钾养分含量,通过相关性分析、主成分和聚类分析法定量评价不同土地利用方式土壤综合肥力的差异。结果表明:(1)长沙市不同土地利用方式的土壤肥力特征变异较大,茶园土壤肥力特征差异大,而菜园土壤肥力特征差异适中。(2)长沙市水田、果园与菜园土壤pH无明显差异,说明其受土地利用方式的影响较小。相反,4种不同的土地利用中土壤碱解氮与速效钾含量皆有显著差异,表明长沙市土壤碱解氮与速效钾含量受水田、茶园、果园、菜园4种不同的土地利用方式的影响大。(3)主成分综合得分计算和聚类分析结果均显示,长沙市不同土地利用方式中水田土壤肥力最好,菜园、果园次之,茶园最差。总体来看,茶园的土壤pH 4.51(呈酸性),显著低于水田、果园与菜园,严重影响了土壤肥力。因此,为了满足茶树生长的酸性环境,在提高土壤肥力改良土壤时,需以增加土壤养分投入为主,调控土壤酸碱度为辅。

关键词: 长沙市, 土地利用方式, 土壤肥力, 主成分分析, 聚类分析, 综合评价

Abstract:

To quantitatively evaluate the influence of different land use patterns on soil fertility characteristics of arable land in Changsha City, the soil pH value, organic matter, total nitrogen, alkaline nitrogen, available phosphorus, available potassium and slow-acting potassium nutrient contents were analyzed at each sampling point during March to September 2023. Paddy fields, tea gardens, orchards and vegetable gardens were taken as experimental objects, and the differences in the comprehensive soil fertility of different land use patterns were quantitatively evaluated by correlation analysis, principal component analysis and cluster analysis. The results showed that: (1) soil fertility characteristics of different land use patterns in Changsha City varied greatly, with large differences in soil fertility characteristics of tea gardens and moderate differences in soil fertility characteristics of vegetable gardens. (2) There was no significant difference in soil pH among paddy fields, orchards and vegetable gardens in Changsha City, indicating that they were less affected by the land use patterns. On the contrary, there were significant differences in soil alkaline nitrogen and available potassium contents among the four different land use patterns, indicating that soil alkaline nitrogen and available potassium contents in Changsha City were greatly affected by the four different land use patterns of paddy fields, tea gardens, orchards and vegetable gardens. (3) The results of principal component composite score calculation and cluster analysis showed that the soil fertility of paddy field was the best among the different land use patterns in Changsha City, followed by vegetable gardens and orchards, and the tea gardens was the worst. Overall, the soil pH value of tea gardens was 4.51 (acidic), which was significantly lower than that of paddy fields, orchards and vegetable gardens, seriously affecting soil fertility. Therefore, in order to meet the acidic environment for the growth of tea trees, it is necessary to increase soil nutrient inputs, and regulate soil pH as a supplement when improving soil fertility.

Key words: Changsha City, land use patterns, soil fertility, principal component analysis, cluster analysis, comprehensive evaluation