| [1] |
王宏燕, 周晨阳, 董娜. 辽宁沈阳发生我国首例非洲猪瘟疫情[J]. 现代畜牧兽医, 2018(10):40-43.
|
| [2] |
GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus: an emerging DNA arbovirus[J]. Frontiers in veterinary science, 2020, 7:215.
doi: 10.3389/fvets.2020.00215
pmid: 32478103
|
| [3] |
SASTRE P, PEREZ T, COSTA S, et al. Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and Classical swine fever viruses[J]. Journal of veterinary diagnostic investigation, 2016, 28(5):543-549.
doi: 10.1177/1040638716654942
pmid: 27400954
|
| [4] |
张志, 康京丽, 李晓成. 非洲猪瘟的流行特征和传播路线[J]. 中国动物检疫, 2018, 35(11):48-51.
|
| [5] |
张皖静, 张琪, 张晓霞, 等. 非洲猪瘟病毒检测技术概述[J]. 上海农业学报, 2021, 37(6):128-131.
|
| [6] |
ZHU H L, ZHANG H Q, XU Y, et al. PCR past, present and future[J]. Biotechniques, 2020, 69(4):317-325.
|
| [7] |
ESPY M J, UHL J R, SLOAN L M, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing[J]. Clinical microbiology reviews, 2006, 19(3):595.
|
| [8] |
LUO Y, ATIM S A, SHAO L, et al. Development of an updated PCR assay for detection of African swine fever virus[J]. Archives of virology, 2016, 162(1):191-199.
|
| [9] |
LEE S, KWON J, KIM B, et al. Development of an accurate and sensitive diagnostic system based on conventional PCR for detection of African swine fever virus in food waste[J]. Indian journal of microbiology, 2022, 62(2):293-306.
doi: 10.1007/s12088-022-01007-y
pmid: 35462715
|
| [10] |
BUSTIN S A, BENES V, NOLAN T, et al. Quantitative real-time RT-PCR-a perspective[J]. Journal of molecular endocrinology, 2005, 34(3):597-601.
|
| [11] |
张险朋. 非洲猪瘟实验室检测技术研究进展[J]. 畜牧兽医科技信息, 2019(7):18-20.
|
| [12] |
WU X L, XIAO L, LIN H, et al. Development and application of a droplet digital polymerase chain reaction (ddPCR) for detection and investigation of African swine fever virus[J]. Canadian journal of veterinary research, 2018, 82(1):70-74.
|
| [13] |
ZHU J, JIAN W, HUANG Y, et al. Development and application of a duplex droplet digital polymerase chain reaction assay for detection and differentiation of EP402R-deleted and wild-type African swine fever virus[J]. Frontiers in veterinary science, 2022, 9:905706.
|
| [14] |
金梅林, 高朔, 邹维华, 等. 检测具有感染性ASFV的EMA-ddPCR引物、探针及应用[P]. 中国专利,CN202110744582.4, 2022-02-01.
|
| [15] |
全国动物卫生标准化技术委员会. GB/T 18648—2020,非洲猪瘟诊断技术[S]. 北京: 中国标准出版社, 2020:5-7.
|
| [16] |
QI Y, JUN X, CHEN X, et al. The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus[J]. International journal of biological macromolecules, 2017, 104(Pt A):1223-1228.
doi: S0141-8130(17)32212-2
pmid: 28669806
|
| [17] |
ZHOU Z, ZHANG Y, LIN X, et al. Development of a novel reverse transcription droplet digital PCR assay for the sensitive detection of Senecavirus A[J]. Transboundary and emerging diseases, 2018, 66(1):517-525.
|
| [18] |
MANOJ P. Droplet digital PCR technology promises new applications and research area[J]. Mitochondrial DNA, 2014, 27(1):742-746.
|
| [19] |
KÖPPEL R, BUCHER T. Rapid establishment of droplet digitalPCRfor quantitative GMO analysis[J]. European food research and technology, 2015, 241(3):427-439.
|
| [20] |
SCHULER F, SCHWEMMER F, TROTTER M, et al. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA[J]. Lab on a chip, 2015, 15(13):2759-2766.
doi: 10.1039/c5lc00291e
pmid: 25947077
|
| [21] |
DUBE S, QIN J, RAMAKRISHNAN R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device[J]. Plos one, 2008, 3(8):e2876-e2876.
|
| [22] |
JACOBS B K M, GOETGHEBEUR E, CLEMENT L. Impact of variance components on reliability of absolute quantification using digital PCR[J]. BMC bioinformatics, 2014, 15(1):283.
|
| [23] |
BHAT S, HERRMANN J, ARMISHAW P, et al. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number[J]. Analytical and bioanalytical chemistry, 2009, 394(2):457-467.
doi: 10.1007/s00216-009-2729-5
pmid: 19288230
|
| [24] |
TAYLOR S C, CARBONNEAU J, SHELTON D N, et al. Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-QPCR: clinical implications for quantification of oseltamivir-resistant subpopulations[J]. Journal of virological methods, 2015, 224:58-66.
doi: 10.1016/j.jviromet.2015.08.014
pmid: 26315318
|
| [25] |
VYNCK M, VANDESOMPELE J, THAS O. Quality control of digital PCR assays and platforms[J]. Analytical and bioanalytical chemistry, 2017, 409(25):5919-5931.
doi: 10.1007/s00216-017-0538-9
pmid: 28799053
|
| [26] |
WITTE A K, MESTER P, FISTER S, et al. A systematic investigation of parameters influencing droplet rain in the Listeria monocytogenes PrfA assay-reduction of ambiguous results in ddPCR[J]. Plos one, 2016, 11(12):e0168179-e0168179.
|
| [27] |
WHALE A S, HUGGETT J F, COWEN S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation[J]. Nucleic acids research, 2012, 40(11):e82-e82.
|
| [28] |
原霖, 董浩, 倪建强, 等. 非洲猪瘟病毒微滴数字PCR检测方法的建立[J]. 畜牧与兽医, 2019, 51(7):81-84.
|
| [29] |
WHALE A S, SPIEGELAERE W D, TRYPSTEEN W, et al. The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020[J]. Clinical chemistry, 2020, 66(8):1012-1029.
doi: 10.1093/clinchem/hvaa125
pmid: 32746458
|
| [30] |
肖芳, 李俊, 王颢潜, 等. 转基因玉米NK603转化体/zSSIIb内标基因二重微滴数字PCR方法的建立及应用[J]. 中国农业科学, 2021, 54(22):4728-4739.
doi: 10.3864/j.issn.0578-1752.2021.22.002
|
| [31] |
魏茂琳, 姜彦芬, 韩钦, 等. 食品中单核细胞增生李斯特氏菌ddPCR定量检测方法的建立及应用[J]. 中国口岸科学技术, 2023, 5(11):81-89.
|
| [32] |
范宏博, 蔡永洪, 李月玥, 等. 幽门螺杆菌微滴式数字PCR检测体系建立[J]. 中国公共卫生, 2024, 40(1):87-90.
|
| [33] |
VYNCK M, THAS O. Reducing bias in digital PCR quantification experiments: the importance of appropriately modeling volume variability[J]. Analytical chemistry, 2018, 90(11):6540-6547.
doi: 10.1021/acs.analchem.8b00115
pmid: 29739189
|
| [34] |
陈维琳, 侯杰, 王念, 等. 液滴式数字PCR与实时荧光定量PCR检测利什曼原虫的方法比较[J]. 中国人兽共患病学报, 2023, 39(10):986-992,1031.
doi: 10.3969/j.issn.1002-2694.2023.00.106
|