1. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology, 2013. 200(4): p. 373-383. 2. da Silveira, J.C., et al., Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biology of reproduction, 2012. 86(3): p. 1-10. 3. Santonocito, M., et al., Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertility and sterility, 2014. 102(6): p. 1751-1761. 4. Roth, L.W., et al., Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. Journal of assisted reproduction and genetics, 2014. 31(3): p. 355-362. 5. Sohel, M.M.H., et al., Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PloS one, 2014. 8(11): p. e78505. 6. Mittelbrunn, M., et al., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature communications, 2011. 2: p. 282. 7. Valadi, H., et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology, 2007. 9(6): p. 654-659. 8. Pegtel, D.M., et al., Functional delivery of viral miRNAs via exosomes. Proceedings of the National Academy of Sciences, 2010. 107(14): p. 6328-6333. 9. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 2008. 105(30): p. 10513-10518. 10. Weber, J.A., et al., The microRNA spectrum in 12 body fluids. Clinical chemistry, 2010. 56(11): p. 1733-1741. 11. Simons, M. and G. Raposo, Exosomes-vesicular carriers for intercellular communication. Current opinion in cell biology, 2009. 21(4): p. 575-581. 12. Muralidharan-Chari, V., et al., Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci, 2010. 123(10): p. 1603-1611. 13. Vlassov, A.V., et al., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012. 1820(7): p. 940-948. 14. Simpson, R.J., et al., Exosomes: proteomic insights and diagnostic potential. Expert review of proteomics, 2009. 6(3): p. 267-283. 15. Cronqvist, T., et al., Syncytiotrophoblast vesicles show altered micro-RNA and haemoglobin content after ex-vivo perfusion of placentas with haemoglobin to mimic preeclampsia. PloS one, 2014. 9(2): p. e90020. 16. Pol, E., et al., Innovation in detection of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2013. 11(s1): p. 36-45. 17. Witwer, K.W., et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of extracellular vesicles, 2013. 2: p. 20360-20381. 18. Coticchio, G., et al., Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Human reproduction update, 2015. 21 (4): p. 427-454. 19. Matzuk, M.M., et al., Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, 2002. 296(5576): p. 2178-2180. 20. Wigglesworth, K., et al., Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biology of reproduction, 2015. 92(1): p. 23-37. 21. Appeltant, R., et al., Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus-oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology, 2015. 83(4): p. 567-576. 22. Park, J.-Y., et al., EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science, 2004. 303(5658): p. 682-684. 23. Carletti, M.Z., S.D. Fiedler, and L.K. Christenson, MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biology of reproduction, 2010. 83(2): p. 286-295. 24. Conti, M., et al., Role of the epidermal growth factor network in ovarian follicles. Molecular Endocrinology, 2006. 20(4): p. 715-723. 25. Navakanitworakul, R., et al., Characterization and Small RNA Content of Extracellular Vesicles in Follicular Fluid of Developing Bovine Antral Follicles. Scientific reports, 2016. 6: p. 25486-25499. 26. Cakmak, H., et al., Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proceedings of the National Academy of Sciences, 2016. 113(9): p. 2424-2429. 27. Hossain, M.M., et al., Characterization and importance of microRNAs in mammalian gonadal functions. Cell and tissue research, 2012. 349(3): p. 679-690. 28. Arroyo, J.D., et al., Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences, 2011. 108(12): p. 5003-5008. 29. Kaji, K., et al., The gamete fusion process is defective in eggs of Cd9-deficient mice. Nature genetics, 2000. 24(3): p. 279-282. 30. Miyado, K., et al., Requirement of CD9 on the egg plasma membrane for fertilization. Science, 2000. 287(5451): p. 321-324. 31. Miyado, K., et al., The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proceedings of the National Academy of Sciences, 2008. 105(35): p. 12921-12926. 32. Barraud-Lange, V., et al., Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction, 2009. 144(1): p. 53-66. 33. Cortez, M.A., J.W. Welsh, and G.A. Calin, Circulating microRNAs as noninvasive biomarkers in breast cancer, in Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. 2012, Springer. p. 151-161.
|