[1] |
单文俊, 王庆贵, 闫国永, 等. 基于土壤微生物的碳氮互作效应综述[J]. 中国农学通报, 2016,32(23):65-71.
|
[2] |
贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015,35(20):6575-6583.
doi: 10.5846/stxb201506061143
URL
|
[3] |
贺瑞含, 杜宗军, 俞勇, 等. 北极苔原土壤中可培养细菌的分离及其抗菌活性测定[J]. 微生物学报, 2019,59(06):1050-1062.
|
[4] |
刘君, 王宁, 崔岱宗, 等. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019,27(08):903-910.
|
[5] |
王凤, 王宁练, 徐柏青, 等. 青藏高原唐古拉哈日钦冰芯表层和深层可培养细菌特征[J/OL]. 冰川冻土, http://kns.cnki.net/kcms/detail/62.1072.P.20190828.1823.002.html, 2019:1-10.
|
[6] |
杨恒山, 萨如拉, 高聚林, 等. 秸秆还田对连作玉米田土壤微生物学特性的影响[J]. 玉米科学, 2017,25(05):98-104.
|
[7] |
刘建国, 刘卫国. 微生物介导的氮循环过程研究进展[J]. 草地学报, 2018,26(02):277-283.
|
[8] |
Robertson G P, Groffman P M. Nitrogen transformations soil microbiology[J]. Ecology and Biochemistry, 2015,4(5):421-446.
|
[9] |
Junier P, Molina V, Dorador C, et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment[J]. Applied Microbiology and Biotechnology, 2010,85(3):425-440.
doi: 10.1007/s00253-009-2228-9
URL
pmid: 19830422
|
[10] |
Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016,24(9):699-712.
doi: 10.1016/j.tim.2016.05.004
URL
pmid: 27283264
|
[11] |
Bartossek R, Nicol G W, Lanzen A, et al. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context[J]. Environmental Microbiology, 2010,12:1075-1088.
doi: 10.1111/j.1462-2920.2010.02153.x
URL
pmid: 20132279
|
[12] |
康鹏亮, 陈胜男, 黄廷林, 等. 好/厌氧条件下反硝化细菌脱氮特性与功能基因[J]. 环境科学, 2018(08):1-12.
|
[13] |
Marcel M M K, Hannah K M, Boran K. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology. 2018,16(5):263-276.
doi: 10.1038/nrmicro.2018.9
URL
pmid: 29398704
|
[14] |
Cui X, Zhang, Gao J, et al. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China[J]. Sci Rep., 2018 8(1):16554. doi: 10.1038/s41598-018-34685-0.
doi: 10.1038/s41598-018-34685-0
URL
pmid: 30410029
|
[15] |
Song Z L, Wang J, Liu G B, et al. Changes in nitrogen functional genes in soil profiles of grassland under long-term grazing prohibition in a semiarid area[J], Science of the Total Environment, 2019,673:92-101.
URL
pmid: 30986685
|
[16] |
Chen D, Li Y, Wang C, et al. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field[J]. Science of the Total Environment, 2019,693:133549. doi.org/ 10.1016/j.scitotenv.,2019.07.355.
doi: 10.1016/j.scitotenv.2019.07.355
URL
pmid: 31374503
|
[17] |
Andre A. Pulschen, Amanda G, et al. Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media[J]. Frontiers in Microbiology, 2017,8:1346. doi: 10.3389/fmicb.2017.01346.
doi: 10.3389/fmicb.2017.01346
URL
pmid: 28769908
|
[18] |
Verhagen F J, Laanbroek H J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats[J]. Applied and Environmental Microbiology, 1991,57(11):3255-3263.
doi: 10.1128/AEM.57.11.3255-3263.1991
URL
pmid: 16348588
|
[19] |
曾希柏, 王亚男, 王玉忠, 等. 施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响[J]. 应用生态学报, 2014,25(2):505-514.
|
[20] |
Huang X, Bai J, Li K R, et al. Characteristics of two novel cold- and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland[J]. Mar Pollut Bull, 2017,114(1):192-200.
URL
pmid: 27622929
|
[21] |
沈萍, 陈向东. 微生物学[M]. 北京: 高等教育出版社, 2006: 136-138.
|
[22] |
姚娜. 异养氨氧化细菌氮素转化活性与相关功能基因的检测[D]. 沈阳:沈阳农业大学, 2018.
|
[23] |
Santoro A E, Casciotti K L, Francis C A. Activity, abundance and diversity of nitrifying archaea and bacteria in the centeral California current[J]. Environ Microbiol, 2010,12:1989-2006.
doi: 10.1111/j.1462-2920.2010.02205.x
URL
pmid: 20345944
|
[24] |
Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiol. Mol. Biol.Rev., 1997,61:533-616.
|
[25] |
Casciotti K L, Ward B B. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria[J]. FEMS Microbiol Ecol, 2005,52(2):197-205.
doi: 10.1016/j.femsec.2004.11.002
URL
pmid: 16329906
|
[26] |
Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998,64(10):3769-3775.
doi: 10.1128/AEM.64.10.3769-3775.1998
URL
pmid: 9758798
|
[27] |
孔庆鑫, 李君文, 王新为, 等. 一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J]. 应用与环境生物学报, 2005,2:222-225.
|
[28] |
Markus C, Schmid, Alan B, et al. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria[J]. Environmental microbiology, 2008,10(11):3140-3149.
doi: 10.1111/j.1462-2920.2008.01732.x
URL
pmid: 18973625
|
[29] |
赵天涛, 项锦欣, 张丽杰, 等. 矿化垃圾中氧化甲烷兼性营养菌的筛选与生物特性研究[J]. 环境科学, 2012,33(5):1670-1675.
|
[30] |
Tate R. Nitrification in histosols: a potential role for the heterotrophic nitrifier[J]. Applied and Environmental Microbiology, 1977,33(4):911-994.
doi: 10.1128/AEM.33.4.911-914.1977
URL
pmid: 869537
|