中国农学通报 ›› 2022, Vol. 38 ›› Issue (27): 119-124.doi: 10.11924/j.issn.1000-6850.casb2022-0269
所属专题: 生物技术
李佳佳1,2(), 徐翎清1,2, 赵阳1,2, 芮秀丽1,2, 石俊婷1,2, 刘大丽1,2()
收稿日期:
2022-04-08
修回日期:
2022-06-15
出版日期:
2022-10-05
发布日期:
2022-09-21
通讯作者:
刘大丽
作者简介:
李佳佳,女,1993年出生,陕西渭南人,在读研究生,研究方向:作物分子生物学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:0451-86609494,E-mail: 基金资助:
LI Jiajia1,2(), XU Lingqing1,2, ZHAO Yang1,2, RUI Xiuli1,2, SHI Junting1,2, LIU Dali1,2()
Received:
2022-04-08
Revised:
2022-06-15
Online:
2022-10-05
Published:
2022-09-21
Contact:
LIU Dali
摘要:
环境的日益恶化迫使人们放弃高肥生产的观念,转向低肥绿色环保生产的理念。本文主要从低氮胁迫下氮代谢相关的酶、氮素同化途径、初级代谢、次级代谢以及氮代谢相关基因五方面综述了植物体内不同的代谢水平、形态、生理和分子响应,探讨了不同生长阶段植物的耐低氮策略,阐述了氮利用效率(NUE)相关的酶及其调控过程抵御氮胁迫过程中的作用机理。本文提出今后可针对不同植物或同一植物的不同生长期的低氮耐受差异,以及关键基因表达产物之间的关系,从多学科、多角度系统全面的研究植物在低氮胁迫下的分子响应机制,为氮代谢参与植物低氮胁迫研究提供理论参考。
中图分类号:
李佳佳, 徐翎清, 赵阳, 芮秀丽, 石俊婷, 刘大丽. 氮代谢参与植物低氮胁迫研究进展[J]. 中国农学通报, 2022, 38(27): 119-124.
LI Jiajia, XU Lingqing, ZHAO Yang, RUI Xiuli, SHI Junting, LIU Dali. Nitrogen Metabolism Involved in Low Nitrogen Stress in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 119-124.
[1] |
GOOD A G, SHRAWAT A K, MUENCH D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in plant science, 2004, 9(12):597-605.
doi: 10.1016/j.tplants.2004.10.008 URL |
[2] |
CURCI P L, AIESE CIGLIANO R, ZULUAGA D L, et al. Transcriptomic response of durum wheat to nitrogen starvation[J]. Scientific reports, 2017, 7(1):1-14.
doi: 10.1038/s41598-016-0028-x URL |
[3] |
GUTIéRREZ R A. Systems biology for enhanced plant nitrogen nutrition[J]. Science, 2012, 336(6089):1673-1675.
doi: 10.1126/science.1217620 URL |
[4] | 许振柱, 周广胜. 植物氮代谢及其环境调节研究进展[J]. 应用生态学报, 2004(3):511-516. |
[5] |
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual review of plant biology, 2012, 63:153-182.
doi: 10.1146/annurev-arplant-042811-105532 URL |
[6] | CHOW F. Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor[J]. Agricultural and biological sciences, applied photosynthesis, In tech, 2012:105-120. |
[7] |
FOYER C H, NOCTOR G, HODGES M. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency[J]. Journal of experimental botany, 2011, 62(4):1467-1482.
doi: 10.1093/jxb/erq453 URL |
[8] |
YANG X, NIAN J, XIE Q, et al. Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies[J]. Molecular plant, 2016, 9(11):1520-1534.
doi: 10.1016/j.molp.2016.09.004 URL |
[9] |
XIN W, ZHANG L, ZHANG W, et al. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability[J]. International journal of molecular sciences, 2019, 20(9):2349.
doi: 10.3390/ijms20092349 URL |
[10] |
LAURENT S, CHEN H, BéDU S, et al. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120[J]. Proceedings of the national academy of sciences, 2005, 102(28):9907-9912.
doi: 10.1073/pnas.0502337102 URL |
[11] |
REICH P B, TjOELKER M G, MACHADO J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants[J]. Nature, 2006, 439(7075):457-461.
doi: 10.1038/nature04282 URL |
[12] |
CHELLAMUTHU V R, ALVA V, FORCHHAMMER K. From cyanobacteria to plants: conservation of PII functions during plastid evolution[J]. Planta, 2013, 237(2):451-462.
doi: 10.1007/s00425-012-1801-0 URL |
[13] |
XIN M, WANG L, LIU Y, et al. Transcriptome profiling of cucumber genome expression in response to long-term low nitrogen stress[J]. Acta physiologiae plantarum, 2017, 39(6):1-11.
doi: 10.1007/s11738-016-2300-x URL |
[14] |
BI Y M, WANG R L, ZHU T, et al. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis[J]. BMC genomics, 2007, 8:281-281.
doi: 10.1186/1471-2164-8-281 URL |
[15] |
MENG F, XIANG D, ZHU J, et al. Molecular mechanisms of root development in rice[J]. Rice, 2019, 12(1):1-10.
doi: 10.1186/s12284-018-0262-x URL |
[16] |
EISSENSTAT D, WELLS C, YANAI R, et al. Building roots in a changing environment: implications for root longevity[J]. The new phytologist, 2000, 147(1):33-42.
doi: 10.1046/j.1469-8137.2000.00686.x URL |
[17] |
JU C, BURESH R J, WANG Z, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field crops research, 2015, 175:47-55.
doi: 10.1016/j.fcr.2015.02.007 URL |
[18] |
WALCH-LIU P, IVANOV I I, FILLEUR S, et al. Nitrogen regulation of root branching[J]. Annals of botany, 2006, 97(5):875-881.
doi: 10.1093/aob/mcj601 URL |
[19] |
RUIZ HERRERA L F, SHANE M W, LóPEZ-BUCIO J. Nutritional regulation of root development[J]. Wiley interdisciplinary reviews: developmental biology, 2015, 4(4):431-443.
doi: 10.1002/wdev.183 URL |
[20] | EISSENSTAT D M. Trade-offs in root form and function[J]. Ecology in agriculture, 1997:173-199. |
[21] |
TRUBAT R, CORTINA J, VILAGROSA A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings[J]. Oecologia, 2012, 170(4):899-908.
doi: 10.1007/s00442-012-2380-2 URL |
[22] | 李佳佳, 魏多, 徐翎清, 等. 甜菜对低氮胁迫的形态学响应机制[J]. 中国农学通报, 2021, 37(36):41-46. |
[23] |
CHAMIZO-AMPUDIA A, SANZ-LUQUE E, LLAMAS A, et al. Nitrate reductase regulates plant nitric oxide homeostasis[J]. Trends in plant science, 2017, 22(2):163-174.
doi: 10.1016/j.tplants.2016.12.001 URL |
[24] |
钟鹏, 刘杰, 王建丽, 等. 花生对低温胁迫的生理响应及抗寒性评价[J]. 核农学报, 2018, 32(6):1195-1202.
doi: 10.11869/j.issn.100-8551.2018.06.1195 |
[25] | 汤玉玮, 林振武, 陈敬祥. 硝酸还原酶活力与作物耐肥性的相关性及其在生化育种上应用的探讨[J]. 中国农业科学, 1985(6):39-45. |
[26] |
CREIGHTON M T, SANMARTíN M, KATAYA A R, et al. Light regulation of nitrate reductase by catalytic subunits of protein phosphatase 2A[J]. Planta, 2017, 246(4):701-710.
doi: 10.1007/s00425-017-2726-4 URL |
[27] |
程丽丽, 潘樱, 林艳, 等. 低氮胁迫对不同光皮桦基因型苗期生长及生理生化特征的影响[J]. 核农学报, 2020, 34(11):2435-2443.
doi: 10.11869/j.issn.100-8551.2020.11.2435 |
[28] |
KUSANO M, TABUCHI M, FUKUSHIMA A, et al. Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice[J]. The plant journal, 2011, 66(3):456-466.
doi: 10.1111/j.1365-313X.2011.04506.x URL |
[29] |
HIREL B, GADAL P. Glutamine synthetase in rice: a comparative study of the enzymes from roots and leaves[J]. Plant physiology, 1980, 66(4):619-623.
doi: 10.1104/pp.66.4.619 URL |
[30] | YAMAYA T, OAKS A. Metabolic regulation of ammonium uptake and assimilation, in nitrogen acquisition and assimilation in higher plants[M]. Springer, 2004:35-63. |
[31] |
WALLSGROVE R M, TURNER J C, HALL N P, et al. Barley mutants lacking chloroplast glutamine synthetase—biochemical and genetic analysis[J]. Plant physiology, 1987, 83(1):155-158.
doi: 10.1104/pp.83.1.155 URL |
[32] | LAM H-M, COSCHIGANO K, OLIVEIRA I, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual review of plant biology, 1996, 47(1):569-593. |
[33] |
YU Z, SHE M, ZHENG T, et al. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content[J]. Communications biology, 2021, 4(1):1-16.
doi: 10.1038/s42003-020-01566-0 URL |
[34] | SECHLEY K A, YAMAYA T, OAKS A. Compartmentation of nitrogen assimilation in higher plants[J]. International review of cytology, 1992, 134(6):85-163. |
[35] | 陈阳, 孙华山, 王玉书, 等. 草地早熟禾NADH-GOGAT基因的克隆及表达分析[J]. 草地学报, 2019, 27(2):459-465. |
[36] | 牛超, 刘关君, 曲春浦, 等. 谷氨酸合成酶基因及其在植物氮代谢中的调节作用综述[J]. 江苏农业科学, 2018, 46(9):10-16. |
[37] | 龚茵茵, 燕璐, 林建中, 等. 低等生物谷氨酸脱氢酶基因用于作物遗传改良的研究进展[J]. 生命科学研究, 2021, 25(1):31-38. |
[38] |
LEHMANN T, SKROK A, DABERT M. Stress-induced changes in glutamate dehydrogenase activity imply its role in adaptation to C and N metabolism in lupine embryos[J]. Physiologia plantarum, 2010, 138(1):35-47.
doi: 10.1111/j.1399-3054.2009.01294.x URL |
[39] | 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展[J]. 广西植物, 2020, 40(4):583-591. |
[40] |
VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J]. Current opinion in plant biology, 2006, 9(2):189-195.
doi: 10.1016/j.pbi.2006.01.019 URL |
[41] |
CHIKOV V, BAKIROVA G. Relationship between carbon and nitrogen metabolisms in photosynthesis. The role of photooxidation processes[J]. Photosynthetica, 2000, 37(4):519-527.
doi: 10.1023/A:1007150921664 URL |
[42] | 李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响[J]. 草业学报, 2014, 23(4):204-212. |
[43] |
LILLO C. Signalling cascades integrating light-enhanced nitrate metabolism[J]. Biochemical journal, 2008, 415(1):11-19.
doi: 10.1042/BJ20081115 URL |
[44] |
NUNES-NESI A, FERNIE A R, STITT M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular plant, 2010, 3(6):973-996.
doi: 10.1093/mp/ssq049 URL |
[45] |
BAO A, ZHAO Z, DING G, et al. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance[J]. International journal of molecular sciences, 2015, 16(6):12713-12736.
doi: 10.3390/ijms160612713 URL |
[46] |
SWEETLOVE L J, BEARD K F, NUNES-NESI A, et al. Not just a circle: flux modes in the plant TCA cycle[J]. Trends in plant science, 2010, 15(8):462-470.
doi: 10.1016/j.tplants.2010.05.006 URL |
[47] |
KRAPP A, TRAONG H-N. Regulation of C/N interaction in model plant species[J]. Journal of crop improvement, 2006, 15(2):127-173.
doi: 10.1300/J411v15n02_05 URL |
[48] |
PARRY M, ANDRALOjC P, MITCHELL R A, et al. Manipulation of Rubisco: the amount, activity, function and regulation[J]. Journal of experimental botany, 2003, 54(386):1321-1333.
doi: 10.1093/jxb/erg141 URL |
[49] |
COUSINS A B, PRACHAROENWATTANA I, ZHOU W, et al. Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release[J]. Plant physiology, 2008, 148(2):786-795.
doi: 10.1104/pp.108.122622 URL |
[50] |
ZHANG C C, ZHOU C Z, BURNAP R L, et al. Carbon/nitrogen metabolic balance: lessons from cyanobacteria[J]. Trends in plant science, 2018, 23(12):1116-1130.
doi: 10.1016/j.tplants.2018.09.008 URL |
[51] |
HöRTENSTEINER S, FELLER U. Nitrogen metabolism and remobilization during senescence[J]. Journal of experimental botany, 2002, 53(370):927-937.
doi: 10.1093/jexbot/53.370.927 URL |
[52] |
GAUTHIER P P, BLIGNY R, GOUT E, et al. In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus[J]. New phytologist, 2010, 185(4):988-999.
doi: 10.1111/j.1469-8137.2009.03130.x URL |
[53] |
WANG S, ALSEEKH S, FERNIE A R, et al. The structure and function of major plant metabolite modifications[J]. Molecular plant, 2019, 12(7):899-919.
doi: 10.1016/j.molp.2019.06.001 URL |
[54] |
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of integrative plant biology, 2021, 63(1):180-209.
doi: 10.1111/jipb.13054 URL |
[55] | FRASER C M, CHAPPLE C. The phenylpropanoid pathway in Arabidopsis[J]. The arabidopsis book/American society of plant biologists, 2011,9. |
[56] |
DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The plant cell, 1995, 7(7):1085.
doi: 10.2307/3870059 URL |
[57] |
HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of experimental botany, 2011, 62(8):2465-2483.
doi: 10.1093/jxb/erq442 URL |
[58] |
TOHGE T, WATANABE M, HOEFGEN R, et al. The evolution of phenylpropanoid metabolism in the green lineage[J]. Critical reviews in biochemistry and molecular biology, 2013, 48(2):123-152.
doi: 10.3109/10409238.2012.758083 URL |
[59] |
ZHANG Q, TANG D, LIU M, et al. Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism[J]. Scientia horticulturae, 2018, 231:272-281.
doi: 10.1016/j.scienta.2017.11.026 URL |
[60] | IWASHINA T. Contribution to flower colors of flavonoids including anthocyanins: a review[J]. Natural product communications, 2015, 10(3): 1934578X1501000335. |
[61] |
YE J, WANG G, TAN J, et al. Identification of candidate genes involved in anthocyanin accumulation using Illmuina-based RNA-seq in peach skin[J]. Scientia horticulturae, 2019, 250:184-198.
doi: 10.1016/j.scienta.2019.02.047 URL |
[62] |
ALBERT N W, LEWIS D H, ZHANG H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. Journal of experimental botany, 2009, 60(7):2191-2202.
doi: 10.1093/jxb/erp097 URL |
[63] |
GARCíA-CALDERóN M, PéREZ-DELGADO C M, PALOVE-BALANG P, et al. Flavonoids and isoflavonoids biosynthesis in the model legume lotus japonicus; connections to nitrogen metabolism and photorespiration[J]. Plants, 2020, 9(6):774.
doi: 10.3390/plants9060774 URL |
[64] |
YANG R, CHEN M, SUN J-C, et al. Genome-wide analysis of LIM family genes in Foxtail millet (Setaria italica L.) and characterization of the role of SiWLIM2b in drought tolerance[J]. International journal of molecular sciences, 2019, 20(6):1303.
doi: 10.3390/ijms20061303 URL |
[65] | ZHOU P, SU L, LV A, et al. Gene expression analysis of alfalfa seedlings response to acid-aluminum[J]. International journal of genomics, 2016,2016. |
[66] |
HUANG H, YAO Q, XIA E, et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor[J]. Journal of agricultural and food chemistry, 2018, 66(37):9828-9838.
doi: 10.1021/acs.jafc.8b01995 URL |
[67] |
CONG F, DIEHL B G, HILL J L, et al. Covalent bond formation between amino acids and lignin: cross-coupling between proteins and lignin[J]. Phytochemistry, 2013, 96:449-456.
doi: 10.1016/j.phytochem.2013.09.012 URL |
[68] |
ZHANG X, MISRA A, NARGUND S, et al. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply[J]. The plant journal, 2018, 93(3):472-488.
doi: 10.1111/tpj.13792 URL |
[69] |
ZHAO Q. Lignification: flexibility, biosynthesis and regulation[J]. Trends in plant science, 2016, 21(8):713-721.
doi: 10.1016/j.tplants.2016.04.006 URL |
[70] | LE ROY J, HUSS B, CREACH A, et al. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants[J]. Frontiers in plant science, 2016, 7:735. |
[71] |
YANG W, YOON J, CHOI H, et al. Transcriptome analysis of nitrogen-starvation-responsive genes in rice[J]. BMC plant biology, 2015, 15(1):1-12.
doi: 10.1186/s12870-014-0410-4 URL |
[72] |
TIWARI J K, BUCKSETH T, ZINTA R, et al. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress[J]. Scientific reports, 2020, 10(1):1-18.
doi: 10.1038/s41598-019-56847-4 URL |
[73] |
LIANG T, YUAN Z, FU L, et al. Integrative transcriptomic and proteomic analysis reveals an alternative molecular network of Glutamine Synthetase 2 corresponding to nitrogen deficiency in rice (Oryza sativa L.)[J]. International journal of molecular sciences, 2021, 22(14):7674.
doi: 10.3390/ijms22147674 URL |
[74] | SULTANA N, ISLAM S, JUHASZ A, et al. Transcriptomic study for identification of major nitrogen stress responsive genes in Australian bread wheat cultivars[J]. Frontiers in genetics, 2020:1086. |
[1] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. |
[2] | 董文彩, 刘宪斌, 李红梅, 赵双梅, 包金美, 沈健萍, 梁芳, 鲁美. 不同水平供钙量对木本观赏植物生长发育的影响[J]. 中国农学通报, 2022, 38(8): 42-50. |
[3] | 张日谦, 何孟莹, 钱美娇, 张雪, 刘依琳, 宛传捷, 张震. 不同生境中喜旱莲子草雄蕊雌化的发生及其在花序内的分布模式[J]. 中国农学通报, 2022, 38(4): 29-35. |
[4] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[5] | 李爽, 张小军, 王平, 徐永菊, 侯睿, 朱勋路, 刘行, 张相琼, 岳福良, 李文均, 张小红. 花生不同遗传背景下的花生芽产出系数比较[J]. 中国农学通报, 2022, 38(31): 17-23. |
[6] | 李政璞, 佟静, 王素娜, 李炎艳, 王丽萍, 梁浩, 武占会. 光周期对植物工厂水芹产量和品质的影响[J]. 中国农学通报, 2022, 38(31): 38-42. |
[7] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[8] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[9] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. |
[10] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[11] | 王春玲, 叶彩华, 姜江. 北京地区春季木本植物花粉起始期预报模型研究[J]. 中国农学通报, 2022, 38(28): 89-97. |
[12] | 吴宇炼, 范慧艳, 汪彦欣, 徐凯逸, 邵承媛. 植物免疫诱抗剂研究文献计量可视化分析[J]. 中国农学通报, 2022, 38(27): 138-146. |
[13] | 缪宗崇. 中国植物新品种保护制度的完善思考[J]. 中国农学通报, 2022, 38(26): 100-104. |
[14] | 李荣林, 唐君, 艾仄宜, 穆兵, 杨亦扬, 陈正涛, 史海华. 香草提取物和植物精油增强茶树抗逆能力的效应[J]. 中国农学通报, 2022, 38(26): 111-117. |
[15] | 胡青荻, 郑坚, 李其佐, 魏君艳, 白羽, 钱仁卷. 珍稀濒危植物笔筒树生境调查及保护建议[J]. 中国农学通报, 2022, 38(26): 39-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||