中国农学通报 ›› 2022, Vol. 38 ›› Issue (3): 121-126.doi: 10.11924/j.issn.1000-6850.casb2021-0240
收稿日期:
2021-03-20
修回日期:
2021-06-13
出版日期:
2022-01-25
发布日期:
2022-02-25
通讯作者:
范金石
作者简介:
隋振全,男,1997年出生,山东济宁人,硕士研究生,研究方向:轻工技术与工程。通信地址:266042 山东青岛郑州路53号 青岛科技大学海洋科学与生物工程学院,Tel:0532-84022503,E-mail: 基金资助:
SUI Zhenquan1(), FAN Jinshi1,2(), YIN Chongshan3, MAO Jinchao1
Received:
2021-03-20
Revised:
2021-06-13
Online:
2022-01-25
Published:
2022-02-25
Contact:
FAN Jinshi
摘要:
壳聚糖具有优良的抗菌活性以及天然无毒、生物相容性良好、可生物降解和可再生、来源广泛的特性。为充分理解壳聚糖对植物病原体的作用,本文归纳了壳聚糖对植物病原体的4种作用机制:电荷作用、沉积作用、螯合作用和诱导作用,分析了影响壳聚糖对植物病原体作用效果的主要因素:病原体、壳聚糖、使用条件及其他方面。同时,指出了目前壳聚糖对植物病原体作用研究领域的问题:研究方法多样、研究结果间存在差异甚至出现截然相反结论。建议通过采用先进的仪器设备、建立三维生物细胞模型以及采用统一研究方法或制定研究标准等措施来强化壳聚糖对植物病原体作用的研究,以期为开发以壳聚糖为活性成分的新型植物病害防治剂提供理论指导。
中图分类号:
隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126.
SUI Zhenquan, FAN Jinshi, YIN Chongshan, MAO Jinchao. Chitosan: The Action Mechanism on Plant Pathogens and Its Influencing Factors[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 121-126.
[1] |
ABBASZADEH S, RASHIDIPOUR M, KHOSRAVI P, et al. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells[J]. International journal of nanomedicine, 2020, 15:5963-5975.
doi: 10.2147/IJN.S263013 URL |
[2] |
ZIMET P, MOMBRU A W, MOMBRU D, et al. Physico-chemical and antilisterial properties of nisin-incorporated chitosan/carboxymethyl chitosan films[J]. Carbohydr polym, 2019, 219:334-343.
doi: 10.1016/j.carbpol.2019.05.013 URL |
[3] |
WARDHANI R A K, ASRI L, RACHMAWATI H, et al. Physical-chemical crosslinked electrospun colocasia esculenta tuber protein-chitosan-poly (ethylene oxide) nanofibers with antibacterial activity and cytocompatibility[J]. International journal of nanomedicine, 2020, 15:6433-6449.
doi: 10.2147/IJN.S261483 URL |
[4] |
TORRES-ROSAS R, TORRES-GOMEZ N, MORENO-RODRIGUEZ A, et al. Anti-inflammatory and antibacterial activity of the chitosan/chlorhexidine gel commercial preparation for postexodontia treatment: an in vitro study[J]. European journal of dentistry, 2020, 14(3):397-403.
doi: 10.1055/s-0040-1714453 URL |
[5] |
DOAN C T, TRAN T N, NGUYEN V B, et al. Bioprocessing of squid pens waste into chitosanase by Paenibacillus sp. tku047 and its application in low-molecular weight chitosan oligosaccharides production[J]. Polymers (Basel), 2020, 12(5):1163-1179.
doi: 10.3390/polym12051163 URL |
[6] | SHAHINI SHAMS ABADI M, MIRZAEI E, BAZARGANI A, et al. Antibacterial activity and mechanism of action of chitosan nanofibers against toxigenic clostridioides (clostridium) difficile isolates[J]. Annali di igiene: medicina preventiva e dicomunità, 2020, 32(1):72-80. |
[7] |
REZAZADEH N H, BUAZAR F, MATROODI S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific reports, 2020, 10(1):19615-19628.
doi: 10.1038/s41598-020-76726-7 URL |
[8] |
WALCZAK K, SCHIERZ G, BASCHE S, et al. Antifungal and surface properties of chitosan-salts modified PMMA denture base material[J]. Molecules, 2020, 25(24):5899-5910.
doi: 10.3390/molecules25245899 URL |
[9] |
YUAN X, ZHENG J, JIAO S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydr polym, 2019, 220:60-70.
doi: 10.1016/j.carbpol.2019.05.050 URL |
[10] |
ABDALLAH Y, LIU M, OGUNYEMI S O, et al. Bioinspired green synjournal of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae[J]. Molecules, 2020, 25(20):4795-4813.
doi: 10.3390/molecules25204795 URL |
[11] |
SINGH R K, MARTINS V, SOARES B, et al. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cao) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes[J]. International journal of molecular sciences, 2020, 21(1):306-316.
doi: 10.3390/ijms21010306 URL |
[12] |
ABD EL-HACK M E, EL-SAADONY M T, SHAFI M E, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review[J]. International journal of biological macromolecules, 2020, 164:2726-2744.
doi: 10.1016/j.ijbiomac.2020.08.153 URL |
[13] |
LI J, ZHUANG S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives[J]. European polymer journal, 2020, 138:109984-109996.
doi: 10.1016/j.eurpolymj.2020.109984 URL |
[14] |
ALVEN S, ADERIBIGBE B A. Chitosan and cellulose-based hydrogels for wound management[J]. International journal of molecular sciences, 2020, 21(24):9656-9685.
doi: 10.3390/ijms21249656 URL |
[15] |
KATAS H, LIM C S, NOR AZLAN A Y H, et al. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from lignosus rhinocerotis and chitosan[J]. Saudi pharmaceutical journal, 2019, 27(2):283-292.
doi: 10.1016/j.jsps.2018.11.010 URL |
[16] |
ALQAHTANI F, ALEANIZY F, EL TAHIR E, et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea[J]. International journal of nanomedicine, 2020, 15:7877-7887.
doi: 10.2147/IJN.S272736 URL |
[17] |
WU D, WAN J, LU J, et al. Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens[J]. Food control, 2018, 92:276-285.
doi: 10.1016/j.foodcont.2018.05.009 URL |
[18] |
SAITO H, SAKAKIBARA Y, SAKATA A, et al. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus[J]. PLoS one, 2019, 14(5):e0217504-0217526.
doi: 10.1371/journal.pone.0217504 URL |
[19] |
CHANDRASEKARAN M, KIM K D, CHUN S C. Antibacterial activity of chitosan nanoparticles: a review[J]. Processes, 2020, 8(9):1173-1194.
doi: 10.3390/pr8091173 URL |
[20] |
JAMSHIDI D, SAZEGAR M R. Antibacterial activity of a novel biocomposite chitosan/graphite based on Zinc-grafted mesoporous silica nanoparticles[J]. International journal of nanomedicine, 2020, 15:871-883.
doi: 10.2147/IJN URL |
[21] |
LIU H, DU Y, YANG J, et al. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex[J]. Carbohydrate polymers, 2004, 55(3):291-297.
doi: 10.1016/j.carbpol.2003.10.001 URL |
[22] |
VISHU KUMAR A B, VARADARAJ M C, GOWDA L R, et al. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli[J]. Biochemical journal, 2005, 391(Pt 2):167-175.
doi: 10.1042/BJ20050093 URL |
[23] |
ZIENKIEWICZ-STRZALKA M, DERYLO-MARCZEWSKA A, SKORIK Y A, et al. Silver nanoparticles on chitosan/silica nanofibers: characterization and antibacterial activity[J]. International journal of molecular sciences, 2019, 21(1):166-185.
doi: 10.3390/ijms21010166 URL |
[24] |
ALAM O, QIAO X, NATH T K. The effect of Ca-bearing contents in chitosan on Pb (2+), Cd (2+) and Cu (2+) adsorption and its adsorption mechanism[J]. Journal of environmental health science and engineering, 2020, 18(2):1401-1414.
doi: 10.1007/s40201-020-00556-y URL |
[25] |
WEISSPFLOG J, GUNDEL A, VEHLOW D, et al. Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan[J]. Molecules, 2020, 25(11):2482-2496.
doi: 10.3390/molecules25112482 URL |
[26] | GRANDE-TOVAR C D, CHAVES-LOPEZ C, SERIO A, et al. Chitosan coatings enriched with essential oils: effects on fungi involved in fruit decay and mechanisms of action[J]. Trends in food science & technology, 2018, 78:61-71. |
[27] |
CHOUHAN D, MANDAL P. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-a review[J]. International journal of biological macromolecules, 2021, 166:1554-1569.
doi: 10.1016/j.ijbiomac.2020.11.035 URL |
[28] | SUAREZ-FERNANDEZ M, MARHUENDA-EGEA F C, LOPEZ-MOYA F, et al. Chitosan induces plant hormones and defenses in tomato root exudates[J]. Frontiers in plant science, 2020, 11:1677-1691. |
[29] |
MANJUNATHA G, ROOPA K S, PRASHANTH G N, et al. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation[J]. Pest management science, 2008, 64(12):1250-1257.
doi: 10.1002/ps.v64:12 URL |
[30] | YIN H, DU Y, DONG Z. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors[J]. Frontiers in plant science, 2016, 7:522-526. |
[31] |
VARMA R, VASUDEVAN S. Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus[J]. ACS omega, 2020, 5(32):20224-20230.
doi: 10.1021/acsomega.0c01903 URL |
[32] |
ORELLANO M S, ISAAC P, BRESER M L, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens[J]. Carbohydr polym, 2019, 213:1-9.
doi: 10.1016/j.carbpol.2019.02.016 URL |
[33] |
CHEN Y L, CHOU C C. Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative[J]. Food microbiology, 2005, 22(1):29-35.
doi: 10.1016/j.fm.2004.05.005 URL |
[34] |
ABID S, HUSSAIN T, NAZIR A, et al. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management[J]. International journal of biological macromolecules, 2019, 135:1222-1236.
doi: 10.1016/j.ijbiomac.2019.06.022 URL |
[35] |
TAKAHASHI T, IMAI M, SUZUKI I, et al. Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree[J]. Biochemical engineering journal, 2008, 40(3):485-491.
doi: 10.1016/j.bej.2008.02.009 URL |
[36] | BYUN S M, NO H K, HONG J H, et al. Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells[J]. International journal of food science & technology, 2012, 48(1):136-142. |
[37] |
SAHARIAH P, CIBOR D, ZIELINSKA D, et al. The Effect of molecular weight on the antibacterial activity of N,N,N-trimethyl chitosan (TMC)[J]. International journal of molecular sciences, 2019, 20(7):1743-1756.
doi: 10.3390/ijms20071743 URL |
[38] |
MORIN-CRINI N, LICHTFOUSE E, TORRI G, et al. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry[J]. Environmental chemistry letters, 2019, 17(4):1667-1692.
doi: 10.1007/s10311-019-00904-x URL |
[39] |
GARCIA L G S, GUEDES G M M, SILVA M L Q, et al. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm[J]. Carbohydr polym, 2018, 195:662-669.
doi: 10.1016/j.carbpol.2018.04.091 URL |
[40] |
ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate polymers, 2003, 54(4):527-530.
doi: 10.1016/j.carbpol.2003.07.009 URL |
[41] |
KAPPEL L, MUNSTERKOTTER M, SIPOS G, et al. Chitin and chitosan remodeling defines vegetative development and trichoderma biocontrol[J]. PLoS pathog, 2020, 16(2):e1008320-1008356.
doi: 10.1371/journal.ppat.1008320 URL |
[42] |
SANTOS V P, MARQUES N S S, MAIA P, et al. Seafood waste as attractive source of chitin and chitosan production and their applications[J]. International journal of molecular sciences, 2020, 21(12):4290-4306.
doi: 10.3390/ijms21124290 URL |
[43] |
AL-HMOUD L, ABU FARA D, RASHID I, et al. Influence of chitin source and polymorphism on powder compression and compaction: application in drug delivery[J]. Molecules, 2020, 25(22):5269-5291.
doi: 10.3390/molecules25225269 URL |
[44] |
CHIEN R C, YEN M T, MAU J L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells[J]. Carbohydr polym, 2016, 138:259-264.
doi: 10.1016/j.carbpol.2015.11.061 URL |
[45] |
CHANG A K T, FRIAS R R, ALVAREZ L V, et al. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp.[J]. Biocatalysis and agricultural biotechnology, 2019, 17:189-195.
doi: 10.1016/j.bcab.2018.11.016 URL |
[46] |
BABII O, WANG Z, LIU G, et al. Low molecular weight chitosan nanoparticles for CpG oligodeoxynucleotides delivery: impact of molecular weight, degree of deacetylation, and mannosylation on intracellular uptake and cytokine induction[J]. International journal of biological macromolecules, 2020, 159:46-56.
doi: 10.1016/j.ijbiomac.2020.05.048 URL |
[47] |
CHIEN P J, CHOU C C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of tankan citrus fruit (Citrus tankan Hayata)[J]. Journal of the science of food and agriculture, 2006, 86(12):1964-1969.
doi: 10.1002/(ISSN)1097-0010 URL |
[48] |
TEAIMA M H, ELASALY M K, OMAR S A, et al. Eco-friendly synjournal of functionalized chitosan-based nanoantibiotic system for potential delivery of linezolid as antimicrobial agents[J]. Saudi pharmaceutical journal, 2020, 28(7):859-868.
doi: 10.1016/j.jsps.2020.06.005 URL |
[49] |
PIEGAT A, ZYWICKA A, NIEMCZYK A, et al. Antibacterial activity of N,O-acylated chitosan derivative[J]. Polymers (Basel), 2020, 13(1):107-119.
doi: 10.3390/polym13010107 URL |
[50] | TSAI G J, SU W H. Antibacterial activity of shrimp chitosan against Escherichia coli[J]. Journal of food proteation, 1999, 62(3):239-243. |
[51] |
ARDILA N, DAIGLE F, HEUZEY M C, et al. Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria[J]. Journal of food science, 2017, 82(3):679-686.
doi: 10.1111/jfds.2017.82.issue-3 URL |
[52] |
NO H K, KIM S H, LEE S H, et al. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time[J]. Carbohydrate polymers, 2006, 65(2):174-178.
doi: 10.1016/j.carbpol.2005.12.036 URL |
[1] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[2] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. |
[3] | 王志强, 杨建锋, 石天池. 宁夏石嘴山地区主要粮食作物铜含量特征及影响因素分析[J]. 中国农学通报, 2022, 38(32): 45-54. |
[4] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[5] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. |
[6] | 司璐, 吴彤, 甄锦程, 于洪佳, 刘瑶, 杨骁, 徐利剑. 大兴安岭凋落物中可培养真菌分离、鉴定及活性筛选[J]. 中国农学通报, 2022, 38(26): 118-123. |
[7] | 廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69. |
[8] | 甄锦程, 穆玉婷, 司璐, 于洪佳, 都婷婷, 单体江, 徐利剑. 凋落物真菌Berkleasmium sp.及其螺二萘类化合物抗菌活性的研究[J]. 中国农学通报, 2022, 38(22): 115-120. |
[9] | 胡洁思, 张建国. 基于SBE和SD法的乡村滨水景观带美景度影响因素研究——以衢州庙源溪为例[J]. 中国农学通报, 2022, 38(22): 69-78. |
[10] | 骆美, 郭龙, 费坤, 张天恩, 李陈, 马友华. 耕地质量提升技术及其应用[J]. 中国农学通报, 2022, 38(21): 76-81. |
[11] | 张羽丰, 孙江涛, 李青松, 范利瑶, 文倩. 豫东农区农户宅基地退出意愿及影响因素分析——以扶沟县为例[J]. 中国农学通报, 2022, 38(2): 150-156. |
[12] | 佟帆, 魏琳, 刘绪军, 任宪平, 李志飞, 王平, 郝燕芳. 东北黑土区植被配置的土壤抗冲性研究[J]. 中国农学通报, 2022, 38(2): 44-51. |
[13] | 赵颖, 王飞. 白洋淀湿地CH4和CO2排放特征及其影响因素初探[J]. 中国农学通报, 2022, 38(2): 63-70. |
[14] | 张含, 龚敏, 石汝杰. 重庆市蔬菜地土壤硒含量及其影响因素分析[J]. 中国农学通报, 2022, 38(19): 114-119. |
[15] | 邱天艺, 徐悦, 甄锦程, 司璐, 于洪佳, 穆玉婷, 徐利剑. 大兴安岭森林凋落物的活性真菌及其代谢产物研究[J]. 中国农学通报, 2022, 38(18): 122-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||