中国农学通报 ›› 2022, Vol. 38 ›› Issue (24): 63-69.doi: 10.11924/j.issn.1000-6850.casb2022-0231
收稿日期:
2022-04-01
修回日期:
2022-05-24
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
祖艳群
作者简介:
廖雨梦,女,1997年出生,湖北仙桃人,在读硕士研究生,主要从事重金属污染生态与环境方面的研究。通信地址:650201 云南省昆明市盘龙区 云南农业大学资源与环境学院,E-mail: 基金资助:
LIAO Yumeng1(), LI Zuran2, ZU Yanqun1(
), LIU Caixin1
Received:
2022-04-01
Revised:
2022-05-24
Online:
2022-08-25
Published:
2022-08-22
Contact:
ZU Yanqun
摘要:
土壤中重金属被植物吸收后,通过横向和纵向迁移到植物的不同部位中积累。横向迁移包括共质体和质外体的途径;纵向迁移包括木质部和韧皮部的途径。植物对Cd、Pb和Zn迁移的影响因素包括:屏障结构、转运和生理代谢物质及能量供应。通过重金属在植物体内的迁移特征的研究,为土壤重金属污染的植物修复和农业安全利用提供一定依据。
中图分类号:
廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69.
LIAO Yumeng, LI Zuran, ZU Yanqun, LIU Caixin. Migration Pathways of Heavy Metals in Plants and Influencing Factors: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 63-69.
[1] | 顾济沧, 赵娟. 云南省土壤重金属污染现状及治理技术研究. 环境科学导刊, 2010, 29(5):68-71. |
[2] | HAZRAT A, EZZAT K. What are heavy metals? Long-standing controversy over the scientific use of the term “heavy metals”- proposal of a comprehensive definition[J]. Toxicological & environmental chemistry, 2018, 100(1):6-19. |
[3] | 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929. |
[4] | 王果, 冯康, 李倩, 等. 棉花根系和叶片质外体汁液分离方法的改进[J]. 中国生态农业学报(中英文), 2020, 28(6):852-859. |
[5] |
YANG G L, ZHENG M M, TAN A J, et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology, 2021, 10(6):544.
doi: 10.3390/biology10060544 URL |
[6] |
WANG J L, YUAN J G, YANG Z Y, et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.)[J]. Journal of agricultural and food chemistry, 2009, 57(19):8942-8949.
doi: 10.1021/jf900812s URL |
[7] |
LIU D H, KOTTKE I. Subcellular localization of cadmium in the root cells of Alium cepa by electron energy loss spectroscopy and cytochemisity[J]. Journal of biosciences, 2004, 29(3):329-335.
doi: 10.1007/BF02702615 URL |
[8] |
QIAO X, ZHENG Z, ZHANG L, et al. Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: Subcellular distribution, polyamines and praline[J]. Chemosphere, 2015, 120:179-187.
doi: 10.1016/j.chemosphere.2014.06.055 URL |
[9] | 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49:4323-4341. |
[10] |
HUANG R Z, JIANG Y B, JIA C H, et al. Subcellular distribution and chemical forms of cadmium in Morus alba L.[J]. International journal of phytoremediation, 2019, 20(5):448-453.
doi: 10.1080/15226514.2017.1365344 URL |
[11] | 何蔚, 陈永华, 梁希, 等. 改良锰矿渣中木本植物筛选及锰的亚细胞分布和化学形态[J]. 环境工程, 2018, 36(9):154-160. |
[12] | 孙芳立, 苏忠亮, 郭庆增. Cd在小麦不同生育期器官及亚细胞中的分布[J]. 安徽大学学报:自然科学版, 2019, 43(1):87-93. |
[13] |
XU S S, LIN S Z, LAI Z X. Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls[J]. Plant soil, 2015, 392:71-85.
doi: 10.1007/s11104-015-2443-3 URL |
[14] |
ZHU X F, LEI G J, JIANG T, et al. Cell wall polysaccharides are involve in P-deficient-induced Cd exclusion in Arabidopsis thaliana [J]. Planta, 2012, 236:989-997
doi: 10.1007/s00425-012-1652-8 URL |
[15] |
PILON M, COHU C M, RAVET K, et al. Essential transition metal homeostasis in plants[J]. Current opinion in plant biology, 2009, 12:347-357.
doi: 10.1016/j.pbi.2009.04.011 URL |
[16] |
XIN J, HUANG B, YANG Z, et al. Comparison of cadmium sub-cellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars[J]. Plant soil, 2013, 372(1-2):431-444.
doi: 10.1007/s11104-013-1729-6 URL |
[17] | 唐敏, 张欣, 刘燕, 等. 镉在3种乔木中的积累及其亚细胞分布和化学形态研究[J]. 环境科学学报, 2021, 41(6):2440-2447. |
[18] |
唐敏, 张欣, 谭欣蕊, 等. 锌在3种乔木中的积累及其亚细胞分布和化学形态[J]. 应用生态学报, 2021, 32(12):4298-4306.
doi: 10.13287/j.1001-9332.202112.033 |
[19] | 朱光旭, 肖化云, 郭庆军, 等. 铅锌尾矿污染区3种菊科植物体内重金属的亚细胞分布和化学形态特征[J]. 环境科学, 2017, 38(7):3054-3060. |
[20] |
TIAN S K, LU L L, ZHANG J, et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere, 2011, 84(1):63-69.
doi: 10.1016/j.chemosphere.2011.02.054 URL |
[21] |
WHITE P J. Calcium channels in higher plants[J]. Biochimica et biophysica acta (BBA)-biomembranes, 2000, 1465:171-189.
doi: 10.1016/S0005-2736(00)00137-1 URL |
[22] | 刘利, 郝小花, 田连福, 等. 植物吸收、转运和积累镉的机理研究进展[J]. 生命科学研究, 2015, 19(2):176-184. |
[23] |
HUANG X, DUAN S P, WU Q, et al. Reducing cadmium accumulation in plants: structure-function relations and tissue-specific operation of transporters in the spotlight[J]. Plants, 2020, 9(2):223.
doi: 10.3390/plants9020223 URL |
[24] | 卢玲丽. 超积累植物东南景天Sedum alfredii Hance对镉的吸收及转运机制研究[D]. 杭州: 浙江大学, 2009. |
[25] | 李廷强. 超积累植物东南景天Sedum alfredii Hance对锌的活化、吸收及转运机制[D]. 杭州: 浙江大学, 2005. |
[26] | MORI S, URAGUCHI S, ISHIKAWA S, et al. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum[J]. Environmental & experimental botany, 2009, 67(1):127-132. |
[27] | 迟克宇, 范洪黎. 不同积累型苋菜(Amaranthus mangostanus L. )镉吸收转运特征差异性研究[J]. 植物营养与肥料学报, 2016, 22(6):1612-1619. |
[28] | MAESTRI E, MARMIROLI M, VISIOLI G, et al. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment[J]. Environmental & experimental botany, 2010, 68(1):1-13. |
[29] |
ZHANG M, ZHANG J, LU L L, et al. Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia plantarum, 2016, 60(1):37-47.
doi: 10.1007/s10535-015-0557-3 URL |
[30] |
WOJAS S, HENNIG J, PLAZA S, et al. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root to shoot transport and accumulation[J]. Environmental pollution, 2009, 157(10):2781-2789.
doi: 10.1016/j.envpol.2009.04.024 URL |
[31] |
ZHANG X D, ZHAO K X, YANG Z M. Identifification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus[J]. Gene, 2018, 664:139-151.
doi: 10.1016/j.gene.2018.04.060 URL |
[32] | PEITER E, MONTANINI B, GOBERT A, et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance[J]. Plant biology, 2007, 104(20):8532-8537. |
[33] | WU X, CHEN J H, YUE X M, et al. The zinc-regulated protein (ZIP) family genes and glutathione s-transferase (GST) family genes play roles in Cd resistance and accumulation of pak choi (Brassica campestris ssp. chinensis)[J]. Ecotoxicology and environmental safety, 2019, 183:109571.1-109571.7. |
[34] |
PITTMAN J K, HIRSCHI K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signaling[J]. Plant biology, 2016, 18:741-749.
doi: 10.1111/plb.12460 URL |
[35] |
LUO G Z, WANG H W, HUANG J, et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis[J]. Plant molecular biology, 2005, 59:809-820.
doi: 10.1007/s11103-005-1386-0 URL |
[36] |
KOREN'KOV V, PARK S, CHENG N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers[J]. Planta, 2007, 225(2):403-411.
doi: 10.1007/s00425-006-0352-7 URL |
[37] | 马艳华, 宋瑜, 杨亮. 植物对Cd2+胁迫的调控机理研究进展[J]. 中国环境管理干部学院学报, 2014, 24(2):45-47. |
[38] |
MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New phytologist, 2011, 189:190-199.
doi: 10.1111/j.1469-8137.2010.03459.x URL |
[39] |
WU H L, CHEN C L, DU J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots[J]. Plant physiology, 2012, 158(2):790-800.
doi: 10.1104/pp.111.190983 URL |
[40] |
HART J J, WELCH R M, NORVELL W A, et al. Zinc effects on cadmium accumulation and partitioning innearisogenic lines of durum wheat that differ in grain cadmium concentration[J]. New phytologist, 2005, 167(2):391-401.
doi: 10.1111/j.1469-8137.2005.01416.x URL |
[41] |
UNEO D, IWASHITA T, ZHAO F J, et al. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri [J]. Plant and cell physiology, 2008, 49:540-548.
doi: 10.1093/pcp/pcn026 URL |
[42] |
LIU X, PENG K, WANG A, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9):1136-1141.
doi: 10.1016/j.chemosphere.2009.12.030 URL |
[43] | 杨居荣, 何孟常, 查燕, 等. 稻、麦籽实中Cd的结合形态[J]. 中国环境科学, 2000, 20(5):404-408. |
[44] | 张玉秀, 于飞, 张巧雅, 等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报, 2008, 16(5):1317-1321. |
[45] | YAN Y F, CHOI D H, KIM D S, et al. Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice[J]. Journal of agronomy and crop science, 2010, 13(2):113-119. |
[46] |
TANAKA K, FUJMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants[J]. Soil science and plant nutrition, 2007, 53(1):72-77.
doi: 10.1111/j.1747-0765.2007.00116.x URL |
[47] |
HU Y, TIAN S, FOYER C H, et al. Efficient phloem transport significantly remobilizes cadmium from old to young organs in a hyperaccumulator Sedum alfredii[J]. Journal of hazardous materials, 2019, 365:421-429.
doi: 10.1016/j.jhazmat.2018.11.034 URL |
[48] | 蔡保松, 张国平. 大、小麦对镉的吸收、运输及在籽粒中的积累[J]. 麦类作物学报, 2002(3):82-86. |
[49] |
CAKMAK I, WELCH R M, ERENOGLU B, et al. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings[J]. Plant soil, 2000, 219:279-284.
doi: 10.1023/A:1004777631452 URL |
[50] | 韩旭, 丁国华. 植物对重金属的耐受性和吸收·转运特性的研究进展[J]. 安徽农业科学, 2016, 44(4):106-109. |
[51] | SHOWALTER A M. Structure and function of plant cell wall proteins[J]. Plant cell, 1993, 5:9-23. |
[52] | 刘清泉, 陈亚华, 沈振国, 等. 细胞壁在植物重金属耐性中的作用[J]. 植物生理学报, 2014, 50(5):605-611. |
[53] | 唐剑锋, 林咸永, 章永松, 等. 小麦根系对铝毒的反应及其与根细胞壁组分和细胞壁对铝的吸附-解吸性能的关系[J]. 生态学报, 2005, 25(8):1890-1897. |
[54] |
BRINGEZU K, LICHTENBERGER O, LEOPOLD I, et al. Heavy metal tolerance of Silene vulgaris[J]. Journal of plant physiology, 1999, 154(4):536-546.
doi: 10.1016/S0176-1617(99)80295-8 URL |
[55] |
PELLOUX J, RUSTERUCCI C, MELLEROWICZ E J. New insights into pectin methylesterase structure and function[J]. Trends in plant science, 2007, 12:267.
doi: 10.1016/j.tplants.2007.04.001 URL |
[56] |
YANG Y J, CHENG L M, LIU Z H. Rapid effect of cadmium on lignin biosynthesis in soybean roots[J]. Plant science, 2007, 172(3):632-639.
doi: 10.1016/j.plantsci.2006.11.018 URL |
[57] |
ALI M B, SINGH N, SHOHAEL A M, et al. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress[J]. Plant science, 2006, 171(1):147-154.
doi: 10.1016/j.plantsci.2006.03.005 URL |
[58] |
BHUIYAN N, LIU W, LIU G, et al. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat[J]. Plant molecular biology, 2007, 64:305-318.
doi: 10.1007/s11103-007-9155-x URL |
[59] |
KALMBACH L, HÉMATY K, DE BELLIS D, et al. Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization[J]. Nature plants, 2017, 3:17058.
doi: 10.1038/nplants.2017.58 URL |
[60] | RANATHUNGE K, STEUDLE E, LAFITTE R. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.)[J]. Plant, cell & environment, 2005, 28:1450-1462. |
[61] |
LÍŠKA D, MARTINKA M, KOHANOVÁ J, et al. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses[J]. Annals of botany, 2016, 118:667-674.
doi: 10.1093/aob/mcw047 URL |
[62] | CHEN T, CAI X, WU X, et al. Casparian strip development and its potential function in salt tolerance[J]. Plant signaling & behavior, 2011, 6:1499-1502. |
[63] | NASEER S, LEE Y, LAPIERRE C, et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin[J]. Proceedings of the national academy of sciences of the United States of America, 2012, 109:10101-10106. |
[64] | TAO Q, JUPA R, LIU Y, et al. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii[J]. Plant, cell & environment, 2019, 42(5):1425-1440. |
[65] | 刘仲齐, 张长波. 重金属调控非选择性阳离子通道生理功能的研究进展[J]. 农业资源与环境学报, 2017, 34(1):1-5. |
[66] |
TUNC-OZDEMIR M, CHONG T, ISHKA M R, et al. A cyclic nucleotide-gated channels (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development[J]. Plant physiology, 2013, 161:1010-1020.
doi: 10.1104/pp.112.206888 URL |
[67] |
BOURON A, KISELYOV K, OBERWINKLER J. Permeation, regulation and control of expression of TRP channels by trace metal ions[J]. Pflügers archiv European journal of physiology, 2015, 467:1143-1164.
doi: 10.1007/s00424-014-1590-3 URL |
[68] | 韩佳慧, 万思涛, 俞娇, 等. 参与植物体内镉元素转运的植物锌铁转运蛋白ZIP研究进展[J]. 植物生理学报, 2019, 55(10):1449-1457. |
[69] | 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018(3):15-24. |
[70] |
GAO J, SUN L, YANG X, et al. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J]. PLOS one, 2013, 8:e64643
doi: 10.1371/journal.pone.0064643 URL |
[71] |
BYEON Y, LEE H Y, HWANG Q J, et al. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment[J]. Journal of pineal research, 2015, 58(4):470-478.
doi: 10.1111/jpi.12232 URL |
[72] | 刘翠, 牟凤利, 王吉秀, 等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8):38-43. |
[73] |
JAVED M T, AKRAM M S, TANWIR K, et al. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L. ) cultivars[J]. Ecotoxicology and environmental safety, 2020, 141:216-225.
doi: 10.1016/j.ecoenv.2017.03.027 URL |
[74] | 陆红飞, 乔冬梅, 齐学斌, 等. 外源有机酸对土壤pH值、酶活性和Cd迁移转化的影响[J]. 农业环境科学学报, 2020, 39(3):542-553. |
[75] | 王沛琦, 胡尊红, 胡学礼, 等. 镉胁迫对蓖麻有机酸含量及镉吸收的影响[J]. 山西农业科学, 2021, 49(7):822-827. |
[76] | 杨慧琴, 何思, 张金彪. 铝胁迫下杉木幼苗有机酸含量变化[J]. 福建农业学报, 2021, 36(8):942-947. |
[77] | 侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究[D]. 福州: 福建农林大学, 2013. |
[78] |
MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in plant science, 2001, 6(6):273-278.
doi: 10.1016/S1360-1385(01)01961-6 URL |
[79] |
FIRDAUS-E-BAREEN, SHAFIQ M, JAMIL S. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet[J]. Journal of hazardous materials, 2012, 237/238:186-193.
doi: 10.1016/j.jhazmat.2012.08.033 URL |
[80] |
ABDELGADIR H A, JAGER A K, JOHNSON S D, et al. Influence of plant growth regulators on flowering, fruiting, seed oil content and oil quality of Jatropha curcas[J]. South African journal of botany, 2020, 76(3):440-446.
doi: 10.1016/j.sajb.2010.02.088 URL |
[81] |
PIOTROWSKA-NICZYPORUK A, BAIQUZ A, ZAMBRZYCKA E, et al. Phytohormones as regulators of heavymetal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae)[J]. Plant physiology and biochemistry, 2012, 52:52-65.
doi: 10.1016/j.plaphy.2011.11.009 URL |
[82] |
DENG B, ZHANG W W, YANG H Q. Abscisic acid decreases cell death in Malus hupehensis Rehd. under Cd stress by reducing root Cd2+ infux and leaf transpiration[J]. Journal of plant growth regulation, 2022, 41(2):639-646.
doi: 10.1007/s00344-021-10327-0 URL |
[83] |
LI W M, WANG D S, HU F, et al. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass[J]. Environmental science and pollution research, 2016, 23(11):10656-10664.
doi: 10.1007/s11356-016-6170-y URL |
[84] |
JI P H, JIANG Y J, TANG X W, et al. Enhancing of phytoremediation efficiency using indole-3-acetic acid (IAA)[J]. Soil and sediment contamination: an international journal, 2015, 24(8):909-916.
doi: 10.1080/15320383.2015.1071777 URL |
[85] | 罗洋, 王正霞, 向仰州, 等. 吲哚乙酸和谷氨酸N,N-二乙酸对Cd-Pb复合污染土壤上龙葵生长及重金属吸收的影响[J]. 云南农业大学学报:自然科学, 2022, 37(1):145-151. |
[86] | 冯文静, 高巍, 刘红恩, 等. 植物生长调节剂促进小麦幼苗生长及降低镉吸收转运的研究[J]. 河南农业大学学报, 2021, 55(6):1036-1044. |
[87] |
VADEZ V, KHOLOVA J, MEDINA S, et al. Transpiration efficiency: new insights into an old story[J]. Journal of experimental botany, 2014, 65(21):6141-6153.
doi: 10.1093/jxb/eru040 URL |
[88] | 范晓荣, 沈其荣. ABA,IAA对旱作水稻叶片气孔的调节作用[J]. 中国农业科学, 2003, 36(12):1450-1455. |
[89] |
TANI F H, BARRINGTON S. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.)[J]. Environmental pollution, 2005, 138(3):538-547.
doi: 10.1016/j.envpol.2004.06.005 URL |
[90] | 季玉洁, 万亚男, 王琪, 等. 不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响[J]. 环境科学学报, 2017, 37(5):1939-1946. |
[91] |
PALMGREN M G, NISSEN P. P-type ATPases[J]. Annual review of biophysics, 2011, 40:243-266
doi: 10.1146/annurev.biophys.093008.131331 URL |
[92] |
RASCIO N, NAVARI-IZZO F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant science, 2011, 180(2):169-181.
doi: 10.1016/j.plantsci.2010.08.016 URL |
[93] |
TRIPATHI R D, RAI U N, GUPTA M, et al. Cadmium transport in submerged macrophyte Ceratophyllum demersum L. in presence of various metabolic inhibitors and calcium channel Blockers[J]. Chemosphere, 1995, 31(7):3783-3791.
doi: 10.1016/0045-6535(95)00249-8 URL |
[94] | WILLIAMS L E, PITTMAN J K, HALL J L. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et biophysica acta, 2000, 1465(1):104-126. |
[95] | 林毅雄, 林艺芬, 陈莲, 等. 解偶联剂DNP处理对采后龙眼果实呼吸作用和细胞膜透性的影响[J]. 中国食品学报, 2018, 18(2):191-196. |
[96] | 王吉秀, 太光聪, 祖艳群, 等. 小花南芥根对铅锌吸收的药理学研究[J]. 中国农学通报, 2011, 27(9):206-211. |
[1] | 李晓宇. 苇基杏鲍菇栽培及产品分析[J]. 中国农学通报, 2023, 39(1): 51-55. |
[2] | 洪慈清, 桂芳泽, 陈芳容, 方云, 游雨欣, 关雄, 潘晓鸿. 茶渣制备的生物质炭对重金属镍的吸附研究[J]. 中国农学通报, 2022, 38(9): 109-114. |
[3] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[4] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[5] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[6] | 赵越, 张晓艳, 曹焜, 韩承伟, 姜颖, 边境, 王晓楠, 孙宇峰. 工业大麻抗逆生理及分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 102-106. |
[7] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[8] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[9] | 张晓晴, 李雅, 魏珊, 任大军, 张淑琴. 基于CiteSpace土壤重金属污染防治的知识图谱研究[J]. 中国农学通报, 2022, 38(4): 133-143. |
[10] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[11] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. |
[12] | 王志强, 杨建锋, 石天池. 宁夏石嘴山地区主要粮食作物铜含量特征及影响因素分析[J]. 中国农学通报, 2022, 38(32): 45-54. |
[13] | 张慧敏, 鲍广灵, 周晓天, 高琳琳, 胡宏祥, 马友华. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52-58. |
[14] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[15] | 王爱仙, 刘福阳, 鲍兴禄, 王紫璎, 刘新锐, 王怡暄, 赵俊敏, 巫仁高, 黄志龙, 吴小平. 覆土材料对灵芝产量与品质的影响[J]. 中国农学通报, 2022, 38(28): 48-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||