中国农学通报 ›› 2022, Vol. 38 ›› Issue (3): 52-58.doi: 10.11924/j.issn.1000-6850.casb2021-0209
张慧敏(), 鲍广灵, 周晓天, 高琳琳, 胡宏祥, 马友华(
)
收稿日期:
2021-03-04
修回日期:
2021-06-03
出版日期:
2022-01-25
发布日期:
2022-02-25
通讯作者:
马友华
作者简介:
张慧敏,女,1990年出生,安徽淮北人,博士研究生,研究方向:土壤重金属污染修复。通信地址:230036 安徽合肥蜀山区长江西路130号 安徽农业大学,E-mail: 基金资助:
ZHANG Huimin(), BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua(
)
Received:
2021-03-04
Revised:
2021-06-03
Online:
2022-01-25
Published:
2022-02-25
Contact:
MA Youhua
摘要:
严格管控类耕地是指土壤重金属(镉、汞、砷、铅、铬)含量超过《土壤环境质量 农用地风险管控标准》(GB15618—2018)中风险管制值的耕地。本文对严格管控类耕地种植可食用农作物的重金属安全性进行了评估,旨在为严格管控类耕地种植结构调整以及受污染耕地安全利用提供参考。现有的研究表明,严格管控类耕地种植油料作物,如油菜、花生、芝麻、向日葵籽粒等,重金属易超标,但植物油中的重金属含量如砷和铅等在安全限量以下,可安全食用;但油茶籽油重金属超标率较高,在严格管控类耕地种植需进一步评估品种的积累特性以及籽粒油的安全性;油料作物粕饼经过重金属去除后,可以作为优良的动物饲料和有机肥,能将资源利用最大化。严格管控类耕地种植玉米作为青贮饲料,存在重金属超标风险,而玉米籽粒重金属超标风险相对较低,可进一步筛选低积累玉米品种以达到籽粒安全食用的目的;严格管控类耕地开辟茶园,茶叶的重金属安全性有待进一步研究。需进一步开展食用农作物重金属安全性系列研究,完善食用类作物重金属安全限量标准体系,加强严格管控类耕地作物秸秆处理与资源化利用技术研发,建立严格管控类耕地特定农作物秸秆回收处理与生态补偿机制。
中图分类号:
张慧敏, 鲍广灵, 周晓天, 高琳琳, 胡宏祥, 马友华. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52-58.
ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58.
作物种类 | 铅Pb | 镉Cd | 砷As | 汞Hg | 铬Cr | 参考文献 | |
---|---|---|---|---|---|---|---|
油菜 | 籽粒 | 1.9±0.3h | 0.9±0.1fg | 2.35±0.28 | 0.11±0.04 | — | [ |
籽粒油 | 0.03±1 E-3c | 0.01±0.002b | ND | ND | — | ||
饼粕 | 2.43±0.19b | 0.95±0.04b | 4.34±0.98 | 0.21±0.09 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
花生 | 籽粒 | 3.5±1.5h | 3.5±1.0fg | 2.45±0.52 | 0.14±0.02 | — | |
籽粒油 | 0.04±0.004b | 0.05±0.002a | ND | ND | — | ||
饼粕 | 0.54±0.03c | 1.02±.006b | 3.15±0.87 | 0.26±0.04 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
芝麻 | 籽粒 | 6.9±1.1gh | 0.3±0.1g | — | — | — | [ |
籽粒油 | 0.04±0.002b | 0.011±1 E-3b | — | — | — | ||
饼粕 | 13.83±0.73a | 0.44±0.07c | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
向日葵 | 籽粒 | 0.5±0.1h | 2.3±0.2fg | — | — | — | |
籽粒油 | 0.07±0.002a | ND | — | — | — | ||
饼粕 | 0.71±0.04c | 3.97±0.16a | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
大豆 | 籽粒 | 4.89 | 0.707±0.564 | 0.059±0.026 | — | 0.31±0.23 | [ |
籽粒油 | 0.015 | — | — | — | — | ||
饼粕 | 1500 | 21 | — | — | — |
作物种类 | 铅Pb | 镉Cd | 砷As | 汞Hg | 铬Cr | 参考文献 | |
---|---|---|---|---|---|---|---|
油菜 | 籽粒 | 1.9±0.3h | 0.9±0.1fg | 2.35±0.28 | 0.11±0.04 | — | [ |
籽粒油 | 0.03±1 E-3c | 0.01±0.002b | ND | ND | — | ||
饼粕 | 2.43±0.19b | 0.95±0.04b | 4.34±0.98 | 0.21±0.09 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
花生 | 籽粒 | 3.5±1.5h | 3.5±1.0fg | 2.45±0.52 | 0.14±0.02 | — | |
籽粒油 | 0.04±0.004b | 0.05±0.002a | ND | ND | — | ||
饼粕 | 0.54±0.03c | 1.02±.006b | 3.15±0.87 | 0.26±0.04 | — | ||
土壤 | 699±124 | 10.3±0.5 | 292.92 | 1.46 | — | ||
芝麻 | 籽粒 | 6.9±1.1gh | 0.3±0.1g | — | — | — | [ |
籽粒油 | 0.04±0.002b | 0.011±1 E-3b | — | — | — | ||
饼粕 | 13.83±0.73a | 0.44±0.07c | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
向日葵 | 籽粒 | 0.5±0.1h | 2.3±0.2fg | — | — | — | |
籽粒油 | 0.07±0.002a | ND | — | — | — | ||
饼粕 | 0.71±0.04c | 3.97±0.16a | — | — | — | ||
土壤 | 699±124 | 10.3±0.5 | — | — | — | ||
大豆 | 籽粒 | 4.89 | 0.707±0.564 | 0.059±0.026 | — | 0.31±0.23 | [ |
籽粒油 | 0.015 | — | — | — | — | ||
饼粕 | 1500 | 21 | — | — | — |
[1] |
HERNANDEZ-ALLICA J, BECERRIL J M, GARBISU C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental pollution, 2008, 152(1):32-40.
doi: 10.1016/j.envpol.2007.06.002 URL |
[2] | 武琳霞, 丁小霞, 李培武, 等. 我国油菜镉污染及菜籽油质量安全性评估[J]. 农产品质量与安全, 2016(1):41-46. |
[3] |
YANG Y, ZHOU X H, TIE B Q, et al. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere, 2017, 188:148-156.
doi: 10.1016/j.chemosphere.2017.08.140 URL |
[4] | 黎红亮, 杨洋, 陈志鹏, 等. 花生和油菜对重金属的积累及其成品油的安全性[J]. 环境工程学报, 2015, 9(5):2488-2494. |
[5] |
LLORENT M E J, ORTEGA B P, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J]. Food chemistry, 2011, 127:1257-1262.
doi: 10.1016/j.foodchem.2011.01.064 URL |
[6] |
MOHAJER A, BAGHANI A N, SADIGHARA P, et al. Determination and health risk assessment of heavy metals in imported rice bran oil in Iran[J]. Journal of food composition and analysis, 2020, 86,103384.
doi: 10.1016/j.jfca.2019.103384 URL |
[7] |
BENAVIDES B J, DROHAN P J, SPARGO J T, et al. Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv. Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver)[J]. Chemosphere, 2021, 265,129086.
doi: 10.1016/j.chemosphere.2020.129086 URL |
[8] | SU D C, WONG J W C. Selection of mustard oilseed rape (Brassica juncea L.) for phytoremediation of cadmium contaminated soil[J]. Bulletin of Environmental contamination and toxicology, 2004, 72:991-998. |
[9] | 王汉中. 以新需求为导向的油菜产业发展战略[J]. 中国油料作物学报, 2018, 40(5):613-617. |
[10] |
GRZEBISZ, W, SZCZEPANIAK, W, BARŁOG P, et al. Phosphorus sources for winter oilseed rape (Brassica napus L.) during reproductive growth e magnesium sulfate management impact on P use efficiency[J]. Archives of agronomy and soil science, 2018, 64(12):1646-1662.
doi: 10.1080/03650340.2018.1448389 URL |
[11] |
CAO X R, WANG X Z, TONG W B, et al. Distribution, availability and translocation of heavy metals in soiloilseed rape (Brassica napus L.) system related to soil properties[J]. Environmental pollution, 2019, 252:733-741.
doi: 10.1016/j.envpol.2019.05.147 URL |
[12] | 王帅, 吕金印, 李鹰翔, 等. 几种油料作物对铬、铅的耐受性与积累研究[J]. 农业环境科学学报, 2012, 31(7):1310-1316. |
[13] |
MEHMOOD S, SAEED D A, RIZWAN M, et al. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil[J]. Plant physiology and biochemistry, 2018, 132:345-355.
doi: 10.1016/j.plaphy.2018.09.019 URL |
[14] | 孙建, 周红英, 乐美旺, 等. 重金属对芝麻种子萌发及幼苗生长的影响[J]. 亚热带植物科学, 2016, 45(1):21-26. |
[15] |
CHERAGHI E, AMERI E, MOHEB A. Adsorption of cadmium ions from aqueous solutions using sesame as a low-cost biosorbent: kinetics and equilibrium studies[J]. International journal of environmental science and technology, 2015, 12:2579-2592.
doi: 10.1007/s13762-015-0812-3 URL |
[16] |
ZEHRA A, SAHITO Z A, TONG W, et al. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption[J]. Journal of environmental sciences, 2020, 87:24-38.
doi: 10.1016/j.jes.2019.05.031 URL |
[17] | ZHOU J, CHEN L H, PENG L, et al. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use[J]. Chemosphere, 2020, 247. |
[18] | ZEHRA A, SAHITOA Z A, et al. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an oxisol and an inceptisol[J]. Ecotoxicology and environmental safety, 2020, 187. |
[19] |
KOSEČKOVÁ P, ZVĚŘINA O, PRUŠA T, et al. Estimation of cadmium load from soybeans and soy-based foods for vegetarians[J]. Environmental monitoring and assessment, 2020, 192:1-7.
doi: 10.1007/s10661-019-7904-3 URL |
[20] |
LI Y H, GUAN R X, LIU Z X, et al. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China[J]. Theoretical and applied genetics, 2008, 117:857-871.
doi: 10.1007/s00122-008-0825-0 URL |
[21] | 李铭红, 李侠, 宋瑞生. 受污农田中农作物对重金属镉的富集特征研究[J]. 中国生态农业学报, 2008, 16(3):675-679. |
[22] | 杨燕媛, 黄成涛, 黎秋君, 等. 镉、铅复合污染耕地主要作物安全生产阈值初探[J]. 南方农业, 2020, 14(6):158-168. |
[23] | 何勇强, 陶勤南. 镉胁迫下大豆中镉的分布状况及其籽粒品质[J]. 环境科学学报, 2000, 20(4):510-512. |
[24] |
ZHANG S, SONG J, WU L H, et al. Worldwide cadmium accumulation in soybean grains and feasibility of food production on contaminated calcareous soils[J]. Environmental pollution, 2021, 269,116153
doi: 10.1016/j.envpol.2020.116153 URL |
[25] | 王崇臣, 王鹏, 黄忠臣. 盆栽玉米和大豆对铅、镉的富集作用研究[J]. 安徽农业科学, 2008, 36(24):10383-10386. |
[26] |
ZHANG T, XU W X, LIN X N, et al. Assessment of heavy metals pollution of soybean grains in North Anhui of China[J]. Science of the total environment, 2019, 646:914-922.
doi: 10.1016/j.scitotenv.2018.07.335 URL |
[27] | 周耀渝, 杨胜香, 袁志忠, 等. 湘西铅锌矿区重金属污染评价及优势植物重金属累积特征[J]. 地球与环境, 2012, 40(3):361-365. |
[28] | 彭德乾, 闫超, 吴友根, 等. 海南油茶对土壤重金属的富集作用研究[J]. 现代农业科技, 2018, 21:1-2. |
[29] | 蒋步云, 柴振林, 周侃侃, 等. 不同制取工艺下油茶籽与油茶籽油中重金属迁移关系的研究[J]. 中国粮油学报, 2019, 34(6):81-85. |
[30] |
SOUSA A L, CA ADORL, LILLEB A, et al. Heavy metal accumulation in Halimione portulacoildes: intra and extra-cellular metal binding sites[J]. Chemosphere, 2008, 70(5):850-875.
doi: 10.1016/j.chemosphere.2007.07.012 URL |
[31] | GALE F, JEWISON M, HANSEN J. Prospects for China’s corn yield growth and imports[R]. Department of Agriculture Economic Research Service, Washington DC, United States, 2014. |
[32] | 赵久然, 刘月娥. 玉米及其制品质量安全风险及控制[J]. 食品科学技术学报, 2016, 34(4):12-17. |
[33] |
MEERS E, VAN SLYCKEN S, ADRIAENSEN K, et al. The use of bio-energy crops (Zea mays) for‘phytoattenuation’of heavy metals on moderately contaminated soils: a field experiment[J]. Chemosphere, 2010, 78,35-41.
doi: 10.1016/j.chemosphere.2009.08.015 URL |
[34] | MOJIRI A. The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead[J]. Journal of Environmental biology, 2011, 5,17-22. |
[35] | 焦位雄, 杨虎德, 冯丹妮, 等. Cd、Hg、Pb胁迫下不同作物可食部分重金属含量及累积特征研究[J]. 农业环境科学学报, 2017, 36(9):1726-1733. |
[36] |
Florijn P J, van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines[J]. Plant and soil, 1993, 150(1):25-32.
doi: 10.1007/BF00779172 URL |
[37] | 王娟, 李玉成, 黄欣欣, 等. 铜陵矿区植物重金属富集行为及健康风险评估[J]. 生物学杂志, 2020, 37(3):76-80. |
[38] |
GU Q B, YU T, YANG Z F, et al. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China[J]. Environmental toxicology and pharmacology, 2019, 70,pp 103199.
doi: 10.1016/j.etap.2019.103199 URL |
[39] |
YANG G H, ZHU G Y, LI H L, et al. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments[J]. Journal of integrative agriculture, 2018, 17(8):1861-1870.
doi: 10.1016/S2095-3119(17)61884-7 URL |
[40] |
BERI W T, GESESSEW W S, TIAN S. Maize cultivars relieve health risks of Cd-Polluted Soils: In vitro Cd bioaccessibility and bioavailability[J]. Science of the total environment, 2020, 703,134852.
doi: 10.1016/j.scitotenv.2019.134852 URL |
[41] | 杜彩艳, 余小芬, 杜建磊, 等. 不同玉米品种对Cd、Pb、As积累与转运的差异研究[J]. 生态环境学报, 2019, 28(9):1867-1875. |
[42] |
AN L Y, PAN Y H, WANG Z B, et al. Heavy metal absorption status of five plant species in monoculture and intercropping[J]. Plant and soil, 2011, 345:237-245.
doi: 10.1007/s11104-011-0775-1 URL |
[43] | 李涵, 黄道友, 黄山, 等. 玉米/大豆间作的镉累积规律初探[J]. 农业环境科学学报, 2020, 39(9):1900-1907. |
[44] | ZHANG J, YANG R, CHEN R, et al. Multielemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou province, SW China[J]. Molecules, 2018, 23(11). |
[45] | 吴爱美. 池州市茶叶中重金属元素铅铬镉砷汞的测定分析[J]. 南方农业, 2019, 13(16):50-53. |
[46] | 刘春林, 张建, 彭益书, 等. 贵州雷山茶区土壤-茶叶重金属含量特征及饮茶风险评价[J]. 浙江农业学报, 2020, 32(6):1049-1059. |
[47] | 杨如意, 杨程, 石晓菁, 等. 硒镉高背景区茶叶中硒和砷、汞、镉的积累与浸出特征研究[J]. 农业环境科学学报, 2019, 38(9):2023-2030. |
[48] | NING P, GONG C, ZHANG Y, et al. Lead, cadmium, arsenic, mercury and copper levels in Chinese Yunnan Pu'er tea[J]. Food additives and contaminants, 2011, 4:28-33. |
[49] |
ZHANG J, YANG R D, LI Y C C, et al. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations[J]. Ecotoxicology and environmental safety, 2020, 195:110475.
doi: 10.1016/j.ecoenv.2020.110475 URL |
[50] | 戴斯佳. 重金属(Cd、Pb、Hg、As)污染土壤发展茶叶生产的安全性研究[D]. 长沙:湖南农业大学, 2017:28-32. |
[1] | 李晓宇. 苇基杏鲍菇栽培及产品分析[J]. 中国农学通报, 2023, 39(1): 51-55. |
[2] | 王绍新, 王宝宝, 李中建, 许洛, 冯健英. 中国鲜食玉米的研究脉络和趋势探析[J]. 中国农学通报, 2023, 39(1): 8-15. |
[3] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[4] | 洪慈清, 桂芳泽, 陈芳容, 方云, 游雨欣, 关雄, 潘晓鸿. 茶渣制备的生物质炭对重金属镍的吸附研究[J]. 中国农学通报, 2022, 38(9): 109-114. |
[5] | 吕星辰, 孟军. 基于区块链的农产品溯源:优势与挑战[J]. 中国农学通报, 2022, 38(9): 157-164. |
[6] | 纪坤, 王彬, 赵博文, 薛浩, 吴建民, 朱晓建, 王依欣, 赵海军, 韩赞平. 不同玉米种质材料植株与穗粒性状的灰色关联度分析[J]. 中国农学通报, 2022, 38(9): 27-32. |
[7] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[8] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[9] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[10] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[11] | 赵越, 张晓艳, 曹焜, 韩承伟, 姜颖, 边境, 王晓楠, 孙宇峰. 工业大麻抗逆生理及分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 102-106. |
[12] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[13] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[14] | 张洪芬, 杨丽杰, 赵玉娟, 张峰. 陇东2020年“强凉夏”气候特征及对农业影响分析[J]. 中国农学通报, 2022, 38(5): 117-123. |
[15] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||