中国农学通报 ›› 2022, Vol. 38 ›› Issue (3): 44-51.doi: 10.11924/j.issn.1000-6850.casb2021-0167
刘淑娟1,2(), 张翠萍2, 李淑英2, 杨小燕1, 周元清2(
), 李元1
收稿日期:
2021-02-24
修回日期:
2021-07-06
出版日期:
2022-01-25
发布日期:
2022-02-25
通讯作者:
周元清
作者简介:
刘淑娟,女,1985年生,云南大理人,在读博士研究生,从事草地生态与污染生态学研究。通信地址:653100 云南省玉溪市红塔区凤凰路134号,E-mail: 基金资助:
LIU Shujuan1,2(), ZHANG Cuiping2, LI Shuying2, YANG Xiaoyan1, ZHOU Yuanqing2(
), LI Yuan1
Received:
2021-02-24
Revised:
2021-07-06
Online:
2022-01-25
Published:
2022-02-25
Contact:
ZHOU Yuanqing
摘要:
邻苯二甲酸酯(Phthalic acid esters, PAEs)是地表水环境普遍检出的一类典型环境内分泌干扰物。微生物降解被认为是去除环境介质中PAEs的主要途径,根际微生物是PAEs降解的“主力军”。本研究系统探讨了地表水环境PAEs的污染状况、生物降解途径、典型草本植物根际降解特性,以期为人工湿地草本植物净化地表水环境PAEs污染提供理论依据。
中图分类号:
刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51.
LIU Shujuan, ZHANG Cuiping, LI Shuying, YANG Xiaoyan, ZHOU Yuanqing, LI Yuan. Phthalic Acid Esters Degradation by Rhizosphere Microorganisms of Herbaceous Plants in Surface Water Environment[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 44-51.
国家/地区 | 地区/介质 | DMP | DEP | DBP | BBP | DEHP | DnOP | 文献 |
---|---|---|---|---|---|---|---|---|
美国 | White River | — | — | 0.14~4.14 | 0.04~0.35 | — | — | [ |
美国 | Eleven Point River | — | — | 0.16~1.36 | 0.07~0.14 | — | — | [ |
加拿大 | False Creek Harbor | 0.0035 | — | — | 0.0035 | 0.275 | — | [ |
法国 | 马恩河 | 0.030~0.050 | 0.025~0.092 | 0.140~0.220 | 0.023~0.035 | 0.307~0.708 | nd | [ |
乌干达 | 维多利亚湖 | 0.0068~0.4 | 0.038~1.1 | 0.35~16 | — | 0.21~23 | — | [ |
德国 | 地表水 | nd~0.0086 | 0.0085~0.022 | 0.12~8.8 | 0.33~97.8 | 0.488~97.8 | — | [ |
俄罗斯 | 莫斯科河 | — | — | 0.006~0.018 | — | 0.001~0.013 | — | [ |
尼日利亚 | 奥贡河 | nd | 1480~1755 | 2080~2705 | — | 255~480 | — | [ |
南非 | 伊丽莎白港 | 0.03~350.8 | 0.03~398.3 | 1~1028 | — | 2.1~2306 | — | [ |
马来西亚 | 雪兰莪河 | 0.002~0.028 | 0.006~0.113 | 0.028~0.306 | 0.002~0.021 | 0.051~0.507 | 0.0002~0.014 | [ |
松花江流域 | 松花江 | 0065~0.208 | 0.140~0.334 | 0.190~4.762 | — | 0.364~2.682 | nd~0.621 | [ |
辽河流域 | 辽河 | — | nd~1.75 | 1.43~16.6 | nd~6.55 | nd~37.3 | — | [ |
海河流域 | 海河水体 | — | — | 0.35~40.68 | — | 3.54~101.1 | — | [ |
海河沉积物/(ng/g) | nd~1.82 | 0.18~4.70 | 9.01~229.77 | nd~13.30 | 23.42~1146.05 | 0.12~16.10 | [ | |
黄河流域 | 黄河 | nd~0.58 | 0.01~10.9 | — | nd~26.0 | 0.35~31.8 | — | [ |
淮河流域 | 淮河 | 0.02~0.19 | 0.02~0.92 | 2.17~21.98 | 0.02~2.16 | 0.08~1.52 | — | [ |
长江流域 | 长江水体 | nd~0.1 | nd | nd~35.65 | — | 3.9~54.73 | 0.07~3.2 | [ |
长江南支沉积物/(μg/g) | 0.14~0.41 | 0~0.18 | 18.9~44.6 | 0.2~0.4 | 840.5~1369.4 | 0.5~1.1 | [ | |
珠江流域 | 珠江三角洲 | 0~12.1 | 0~0.95 | 0~4.30 | 0~5.32 | 0.15~8.84 | — | [ |
合肥 | 巢湖 | 0.123~1.106 | 0.133~0.157 | 0.924~5.43 | 0.066~0.076 | 0.162~0.231 | 0.032~0.04 | [ |
江苏 | 太湖 | nd~1.32 | 0.08~4.79 | nd~2.54 | 0.08~4.72 | nd~1.41 | 0.07~0.59 | [ |
南昌 | 鄱阳湖 | nd~0.253 | nd~0.127 | 0.121~1.297 | nd | 0.023~0.896 | nd~0.018 | [ |
哈尔滨 | 磨盘山水库 | nd~0.042 | nd~0.055 | 0.053~4.498 | nd | 0.129~6.6 | nd~0.448 | [ |
国家/地区 | 地区/介质 | DMP | DEP | DBP | BBP | DEHP | DnOP | 文献 |
---|---|---|---|---|---|---|---|---|
美国 | White River | — | — | 0.14~4.14 | 0.04~0.35 | — | — | [ |
美国 | Eleven Point River | — | — | 0.16~1.36 | 0.07~0.14 | — | — | [ |
加拿大 | False Creek Harbor | 0.0035 | — | — | 0.0035 | 0.275 | — | [ |
法国 | 马恩河 | 0.030~0.050 | 0.025~0.092 | 0.140~0.220 | 0.023~0.035 | 0.307~0.708 | nd | [ |
乌干达 | 维多利亚湖 | 0.0068~0.4 | 0.038~1.1 | 0.35~16 | — | 0.21~23 | — | [ |
德国 | 地表水 | nd~0.0086 | 0.0085~0.022 | 0.12~8.8 | 0.33~97.8 | 0.488~97.8 | — | [ |
俄罗斯 | 莫斯科河 | — | — | 0.006~0.018 | — | 0.001~0.013 | — | [ |
尼日利亚 | 奥贡河 | nd | 1480~1755 | 2080~2705 | — | 255~480 | — | [ |
南非 | 伊丽莎白港 | 0.03~350.8 | 0.03~398.3 | 1~1028 | — | 2.1~2306 | — | [ |
马来西亚 | 雪兰莪河 | 0.002~0.028 | 0.006~0.113 | 0.028~0.306 | 0.002~0.021 | 0.051~0.507 | 0.0002~0.014 | [ |
松花江流域 | 松花江 | 0065~0.208 | 0.140~0.334 | 0.190~4.762 | — | 0.364~2.682 | nd~0.621 | [ |
辽河流域 | 辽河 | — | nd~1.75 | 1.43~16.6 | nd~6.55 | nd~37.3 | — | [ |
海河流域 | 海河水体 | — | — | 0.35~40.68 | — | 3.54~101.1 | — | [ |
海河沉积物/(ng/g) | nd~1.82 | 0.18~4.70 | 9.01~229.77 | nd~13.30 | 23.42~1146.05 | 0.12~16.10 | [ | |
黄河流域 | 黄河 | nd~0.58 | 0.01~10.9 | — | nd~26.0 | 0.35~31.8 | — | [ |
淮河流域 | 淮河 | 0.02~0.19 | 0.02~0.92 | 2.17~21.98 | 0.02~2.16 | 0.08~1.52 | — | [ |
长江流域 | 长江水体 | nd~0.1 | nd | nd~35.65 | — | 3.9~54.73 | 0.07~3.2 | [ |
长江南支沉积物/(μg/g) | 0.14~0.41 | 0~0.18 | 18.9~44.6 | 0.2~0.4 | 840.5~1369.4 | 0.5~1.1 | [ | |
珠江流域 | 珠江三角洲 | 0~12.1 | 0~0.95 | 0~4.30 | 0~5.32 | 0.15~8.84 | — | [ |
合肥 | 巢湖 | 0.123~1.106 | 0.133~0.157 | 0.924~5.43 | 0.066~0.076 | 0.162~0.231 | 0.032~0.04 | [ |
江苏 | 太湖 | nd~1.32 | 0.08~4.79 | nd~2.54 | 0.08~4.72 | nd~1.41 | 0.07~0.59 | [ |
南昌 | 鄱阳湖 | nd~0.253 | nd~0.127 | 0.121~1.297 | nd | 0.023~0.896 | nd~0.018 | [ |
哈尔滨 | 磨盘山水库 | nd~0.042 | nd~0.055 | 0.053~4.498 | nd | 0.129~6.6 | nd~0.448 | [ |
植物名称 | PAEs物质 | 降解效率 | 文献 |
---|---|---|---|
芦苇 | DOP、DEHP | 88%、92% | [ |
芦苇-香蒲 | DBP、DEHP、MBP、MEHP | 44.91%~68.25% | [ |
水葱-黄菖蒲-再力花-千屈菜 | DEHP、DBP、DMP、DEP、BBP、DOP | 28.65%~47.1% | [ |
菹草 | DBP、DEHP | 68.52%、84.74% | [ |
甜菜-苜蓿 | DEP、DBP、BBP、DEHP | 66.48% | [ |
黑藻 | DBP、DEHP | 10.4%、27% | [ |
角毛藻-杜氏盐藻-新月鞘藻 | DBP、DEP | 90% | [ |
球形棕囊藻 | DBP | 100% | [ |
紫花苜蓿 | DnBP | 90% | [ |
植物名称 | PAEs物质 | 降解效率 | 文献 |
---|---|---|---|
芦苇 | DOP、DEHP | 88%、92% | [ |
芦苇-香蒲 | DBP、DEHP、MBP、MEHP | 44.91%~68.25% | [ |
水葱-黄菖蒲-再力花-千屈菜 | DEHP、DBP、DMP、DEP、BBP、DOP | 28.65%~47.1% | [ |
菹草 | DBP、DEHP | 68.52%、84.74% | [ |
甜菜-苜蓿 | DEP、DBP、BBP、DEHP | 66.48% | [ |
黑藻 | DBP、DEHP | 10.4%、27% | [ |
角毛藻-杜氏盐藻-新月鞘藻 | DBP、DEP | 90% | [ |
球形棕囊藻 | DBP | 100% | [ |
紫花苜蓿 | DnBP | 90% | [ |
[1] |
HE Y, WANG Q M, HE W, et al. The occurrence, composition and partitioning of phthalate esters (PAEs) in the water-suspended particulate matter (SPM) system of Lake Chaohu, China[J]. Science of the total environment, 2019, 661:285-293.
doi: 10.1016/j.scitotenv.2019.01.161 URL |
[2] | WANG B, QIN X L, XIAO N, et al. Phthalates exposure and semen quality in infertile male population from Tianjin, China: associations and potential mediation by reproductive hormones[J]. Science of the total environment, 2020, 774:140673. |
[3] |
HU R W, ZHAO H M, XU X H, et al. Bacteria-driven phthalic acid ester biodegradation: current status and emerging opportunities[J]. Environment international, 2021, 154:106560.
doi: 10.1016/j.envint.2021.106560 URL |
[4] |
GAO D, LI Z, WEN Z, et al. Occurrence and fate of phthalate esters in full-scale domestiwastewater treatment plants and their impact on receiving waters along the Songhua River in China[J]. Chemosphere, 2014, 95(1):24-32.
doi: 10.1016/j.chemosphere.2013.08.009 URL |
[5] |
GAO X Y, LI J, WANG X N, et al. Exposure and ecological risk of phthalate esters in the Taihu Lake basin,China[J]. Ecotoxicology and environmental safety, 2019, 171:564-570.
doi: 10.1016/j.ecoenv.2019.01.001 URL |
[6] |
LÜ H X, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: A review[J]. Environmental research, 2018, 164:417-429.
doi: 10.1016/j.envres.2018.03.013 URL |
[7] |
AL-SALEH I, AL-RAJUDI T, AL-QUDAIHI G, et al. Evaluating the potential genotoxicity of phthalates esters (PAEs) in perfumes using in vitro assays[J]. Environmental science and pollution research, 2017, 24:23903-23914.
doi: 10.1007/s11356-017-9978-1 URL |
[8] |
TAN S W, WANG D L, CHI Z X, et al. Study on the interaction between typical phthalic acid esters (PAEs) and human haemoglobin (hHb) by molecular docking[J]. Environmental toxicology and pharmacology, 2017, 53:206-211.
doi: 10.1016/j.etap.2017.06.008 URL |
[9] |
ZHANG C P, WANG B, DAI X Y, et al. Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands[J]. Environmental science and pollution research, 2017, 24:11483-11492.
doi: 10.1007/s11356-017-8463-1 URL |
[10] |
HU L, ROBERT C A M, CADOT S. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature communication, 2018, 9:2738.
doi: 10.1038/s41467-018-05122-7 URL |
[11] |
ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature microbiology, 2018, 3:470-480.
doi: 10.1038/s41564-018-0129-3 URL |
[12] |
YUAN S Y, HUANG I, CHANG B V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment[J]. Journal of hazardous materials, 2010, 184:826-831.
doi: 10.1016/j.jhazmat.2010.08.116 URL |
[13] |
HE Y, WANG Q G, HE W, et al. Phthalate esters(PAEs) in atmospheric particles around a large shallow natural lake(Lake Chaohu,China)[J]. Science of the total environment, 2019, 687:297-308.
doi: 10.1016/j.scitotenv.2019.06.034 URL |
[14] |
ZHANG L F, DONG L, REN L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China[J]. Journal of environmental sciences, 2012, 24(2):335-342.
doi: 10.1016/S1001-0742(11)60782-1 URL |
[15] | HUANG W, SONG B, LIANG J, et al. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health[J]. Journal of hazardous materials, 2020, 10:124187. |
[16] |
GZD A, AKS A, PGH B, et al. Microplastic fragment and fiber contamination of beach sediments from selected sites in virginia and north Carolina, USA[J]. Marine pollution bulletin, 2020, 151:110869.
doi: 10.1016/j.marpolbul.2019.110869 URL |
[17] |
ESTHER A G, JESSICA L L, MARIE N, ANAHITA E, et al. Retention of microplastics in a major secondary wastewater treatment plant in vancouver, Canada[J]. Marine pollution bulletin, 2018, 133:553-561.
doi: 10.1016/j.marpolbul.2018.06.006 URL |
[18] |
ANDREA P, SEUNG K K. Influence of Environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: A case study of the bay of brest (Brittany, France)[J]. Environmental pollution, 2017, 225:211-222.
doi: 10.1016/j.envpol.2017.03.023 URL |
[19] |
FLORENCE N, WOLF U P, JOHN N W, et al. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda[J]. Chemosphere, 2021, 262:127716.
doi: 10.1016/j.chemosphere.2020.127716 URL |
[20] |
REGINE N, JAN K. Trends for plasticizers in German freshwater environments evidence for the substitution of DEHP with emerging phthalate and non-phthalate alternatives[J]. Environmental pollution, 2020, 262:114237.
doi: 10.1016/j.envpol.2020.114237 URL |
[21] |
NATALIA E, ALBRECHT P, ELENA A M, et al. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia[J]. Environmental pollution, 2016, 210:409-418.
doi: 10.1016/j.envpol.2015.11.034 URL |
[22] |
ADENIYI A A, OKEDEYI O O, YUAUF K A. Flame ionizationgas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun River catchments, Ketu, Lagos, Nigeria[J]. Environmental monitoring and assessment, 2011, 172:561-569.
doi: 10.1007/s10661-010-1354-2 URL |
[23] |
WEIDEMAN E A, PEROLD V, RYAN P G. Little evidence that dams in the Orange-Vaal River system trap floating microplastics or microfibres[J]. Marine pollution bulletin, 2019, 149:110664.
doi: 10.1016/j.marpolbul.2019.110664 URL |
[24] | SANTHI V A, MUATAFA A M. Assessment of organochlorine pesticides and plasticisersin the Selangor River Basin and possible pollution sources[J]. Journal of environmental monitoring, 2013, 185:1541-1554. |
[25] |
WEN Z, HUANG X, GAO D, et al. Phthalate Esters in surface water of Songhua River watershed associated with landuse types, Northeast China[J]. Environmental science and pollution research, 2018, 25:7688-7698.
doi: 10.1007/s11356-017-1119-3 URL |
[26] |
AI S H, GAO X Y, WANG X N, et al. Exposure and tiered ecological risk assessment of phthalate esters in the surface water of Poyang Lake, China[J]. Chemosphere, 2021, 262:127864.
doi: 10.1016/j.chemosphere.2020.127864 URL |
[27] |
LIU Y, HE Y, ZHANG J D, et al. Distribution, partitioning behavior, and ecological risk assessment of phthalate esters in sediment particle-pore water systems from the main stream of the Haihe River, Northern China[J]. Science of the total environment, 2020, 745:141131.
doi: 10.1016/j.scitotenv.2020.141131 URL |
[28] |
SHA, Y, XIA, X, YANG, Z, et al. Distribution of PAEs in the Middle and Lower reaches of the Yellow River, China[J]. Environmental monitoring and assessment, 2007, 124:277-287.
doi: 10.1007/s10661-006-9225-6 URL |
[29] | ZHANG Z M, ZHANG H H, ZHANG H J, et al. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River estuary and its adjacent area[J]. Science of the Total Environment, 2018a, 619:93-102. |
[30] |
DENG H, LI R L, YAN B Z, et al. PAEs and PBDEs in plastic fragments and wetland sediments in Yangtze estuary[J]. Journal of hazardous materials, 2021, 409:124937.
doi: 10.1016/j.jhazmat.2020.124937 URL |
[31] |
CHENG Z, LIU J B, GAO M, et al. Occurrence and distribution of phthalate esters in freshwater aquaculture fish ponds in Pearl River Delta, China[J]. Environmental Pollution, 2019, 245:883-888.
doi: 10.1016/j.envpol.2018.11.085 URL |
[32] |
GAO X, LI I J, WANG X, et al. Exposure and ecological risk of phthalate esters in the Taihu Lake Basin, China[J]. Ecotoxicology and environmental safety, 2019, 171:564-570.
doi: 10.1016/j.ecoenv.2019.01.001 URL |
[33] | 胡瑞文. 邻苯二甲酸二丁酯(DBP)水解酶基因的克隆与功能分析[D]. 广州:暨南大学, 2018. |
[34] | 沈思, 王晓瑜, 王海霞, 等. 细菌降解邻苯二甲酸酯的研究进展[J]. 生物工程学报, 2019, 35(11):2104-2120. |
[35] | 申建波, 白洋, 韦中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021. |
[36] |
ZHOU Y Q, TIGANE T, LI X Z, et al. Hexachlorobenzene dechlorination in constructed wetland mesocosms[J]. Water Research, 2013, 47:102-110.
doi: 10.1016/j.watres.2012.09.030 URL |
[37] |
REN W J, WANG Y T, et al. Uptake, translocation and metabolism of di-n-butyl phthalate in Alfalfa (Medicago sativa)[J]. Science of the total environment, 2020, 731:138974.
doi: 10.1016/j.scitotenv.2020.138974 URL |
[38] | 林宇龙. 酞酸酯DBP在小白菜根际界面的环境行为及微生物响应的机制[D]. 哈尔滨:东北农业大学, 2019. |
[39] |
WU J, LIAO X W, YU F B, et al. Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter sp. Strain M673 and functional analysis of its expression Product in Escherichia coli[J]. Applied microbiology and biotechnology, 2013, 97(6):2483-2491.
doi: 10.1007/s00253-012-4232-8 URL |
[40] |
KUMAR V, SHARMA N, MAITRA S S. Comparative study on the degradation of di-butyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F[J]. Biotechnology reports, 2017, 15:1-10.
doi: 10.1016/j.btre.2017.04.002 URL |
[41] |
REN L, JIA Y, RUTH N, et al. Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples[J]. Environmental science and pollution research, 2016, 23(16):16609-16619.
doi: 10.1007/s11356-016-6829-4 URL |
[42] |
WANG J, ZHANG M Y, CHEN T, et al. Isolation and identification of a di (2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil[J]. Pedosphere, 2015, 25:202-211.
doi: 10.1016/S1002-0160(15)60005-4 URL |
[43] |
WU X, LIANG R, DAI Q, et al. Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge[J]. Journal of hazardous materials, 2010, 176:262-268.
doi: 10.1016/j.jhazmat.2009.11.022 URL |
[44] |
YANG J, GUO C, LIU S, et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil[J]. Environmental science and pollution research, 2018, 25:17645-17653.
doi: 10.1007/s11356-018-1862-0 URL |
[45] |
ZENG P, MOY B Y, SONG Y H, et al. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules[J]. Applied microbiology and biotechnology, 2008, 80:899-905.
doi: 10.1007/s00253-008-1632-x URL |
[46] |
KUMAR V, MAITRA S S. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway[J]. 3 Biotech, 2016, 6(2):200.
doi: 10.1007/s13205-016-0524-5 URL |
[47] |
CHEN X, ZHANG X, YANG Y, et al. Biodegradation of an endocrine-disrupting Chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J]. Biodegradation, 2015, 26(2):171-182.
doi: 10.1007/s10532-015-9725-6 URL |
[48] |
LU M Y, JIANG W K, GAO Q Q. Degradation of dibutyl phthalate (DBP) by a bacterial consortium and characterization of two novel esterases capable of hydrolyzing PAEs sequentially[J]. Ecotoxicology and environmental safety, 2020, 195:110517.
doi: 10.1016/j.ecoenv.2020.110517 URL |
[49] |
SEPEHRI A, SARRAFZADEH M H. Effect of nitrifers community on fouling mitigation and nitrifcation efciency in a membrane bioreactor[J]. Chemical engineering and processing-process intensification, 2018, 128:10-18.
doi: 10.1016/j.cep.2018.04.006 URL |
[50] |
SEPEHRI A, SARRAFZADEH M H, Avateffazeli M. Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio[J]. Journal of cleaner production, 2020, 247:119164.
doi: 10.1016/j.jclepro.2019.119164 URL |
[51] |
WRIGHT R J, BOSCH R, GIBSON M I, et al. Plasticizer degradation by marine bacterial isolates: a proteogenomic and metabolomic characterization[J]. Environmental science & technology, 2020, 54(4):2244-2256.
doi: 10.1021/acs.est.9b05228 URL |
[52] |
HABE H, MIYAKOSHI M, CHUNG J, et al. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63[J]. Applied microbiology and biotechnology, 2003, 61(1):44-54.
doi: 10.1007/s00253-002-1166-6 URL |
[53] |
ZHANG X Y, FAN X, QIU Y J, et al. Newly identified thermostable esterase from sulfobacillus acidophilus: properties and performance in phthalate ester degradation[J]. Applied environmental microbiology, 2014, 80(22):6870-6878.
doi: 10.1128/AEM.02072-14 URL |
[54] |
JIAO Y Y, CHEN X, WANG X, et al. Identification and characterization of a cold-active phthalate esters hydrolase by screening a metagenomic library derived from biofilms of a wastewater treatment plant[J]. PLOS one, 2013, 8(10):e75977.
doi: 10.1371/journal.pone.0075977 URL |
[55] |
FAN S H, WANG J H, LI K, et al. Complete genome sequence of Gordonia sp. YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters[J]. Journal of biotechnology, 2018, 279:55-60.
doi: 10.1016/j.jbiotec.2018.05.009 URL |
[56] |
Chen X, Zhang X L, Yang Y, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J]. Biodegradation, 2015, 26(2):171-182.
doi: 10.1007/s10532-015-9725-6 pmid: 25773337 |
[57] |
NAHURIRA R, REN L, SONG J L, et al. Degradation of Di(2-ethylhexyl) phthalate by a novel gordonia alkanivorans strain YC-RL2[J]. Current microbiology, 2017, 74(3):309-319.
doi: 10.1007/s00284-016-1159-9 URL |
[58] | HONG D K, JANG S H, LEE C. Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an arctic bacterium Sphingomonas glacialis PAMC 26605[J]. Journal of molecular catalysis b-enzymatic, 2016, 133(S1):337-345. |
[59] | WHANGSUK W, SUNGKEEREE P, NAKASIRI M, et al. Two endocrine disrupting dibutyl phthalate degrading sterases and their compensatory gene expression in Sphingobium sp. SM42[J]. International biodeterioration & biodegradation, 2015, 99:45-54. |
[60] |
DING J M, WANG C F, XIE Z R, et al. Properties of a newly identified esterase from Bacillus sp. K91 and its novel function in diisobutyl phthalate degradation[J]. PLOS one, 2015, 10(3):e0119216.
doi: 10.1371/journal.pone.0119216 URL |
[61] | 商卓. 邻苯二甲酸酯类污染物在人工湿地系统中的去除机制研究[D]. 济南:山东建筑大学, 2019. |
[62] |
ZHOU Y Q, TRESTIP S, LI X Z, et al. Dechlorination of hexachlorobenzene in treatment microcosm wetlands[J]. Ecological engineering, 2012, 42:249-255.
doi: 10.1016/j.ecoleng.2012.02.017 URL |
[63] | 迟杰, 杨瑞, 王爱丽. 湿地植物种类和生长方式对根际酞酸酯及其单酯代谢物分布特征的影响[J]. 湖泊科学, 2012, 24(3):416-421. |
[64] | 王爱丽. 酞酸酯在菹草根际环境中的消减及微生物作用机制[J]. 安全与环境学报, 2013, 4:74-79. |
[65] | 蔡晓丹. 天然水体中菹草对酞酸酯的富集降解特性研究[D]. 天津:天津大学, 2011. |
[1] | 刘颖, 耿丹丹, 韩永胜, 魏敏, 刘柳. 环保型农林保水剂研制、性能与应用[J]. 中国农学通报, 2022, 38(7): 86-90. |
[2] | 王桂珍, 张飞. 快速溶剂萃取-GC-MS/MS测定土壤中邻苯二甲酸酯类化合物[J]. 中国农学通报, 2022, 38(31): 101-104. |
[3] | 曹永清, 刘艳, 张丽慧, 晋婷婷, 任嘉红. 荧光假单胞CLW17菌株对草甘膦的降解及其机制初探[J]. 中国农学通报, 2022, 38(30): 108-117. |
[4] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[5] | 高岩, 李志斐, 刘阳, 王广军, 谢骏, 郭照良. 草型湖泊水生植物残体的生物降解研究进展[J]. 中国农学通报, 2022, 38(15): 53-59. |
[6] | 魏语宁, 刘春光, 付海燕, 吴桐, 宋福强, 马玉堃, 杨峰山. 有机磷类农药微生物修复研究进展[J]. 中国农学通报, 2022, 38(12): 131-137. |
[7] | 赵记军, 于显枫, 张绪成. 地膜源头减量化技术可行路径探讨[J]. 中国农学通报, 2021, 37(9): 57-63. |
[8] | 武盼盼, 杨素芬, 刘书武, 王幻想, 张晓宁, 谷利敏, 刘蕊. 炭基土壤调理剂配施专用肥对玉米土壤微生物及酶活性的影响[J]. 中国农学通报, 2021, 37(26): 66-73. |
[9] | 王岩, 彭强, 赵小明, 尹恒. 生物降解农药残留的研究进展[J]. 中国农学通报, 2021, 37(18): 117-124. |
[10] | 许斌, 韩萍, 薛玉芬. 污水厂中草甘膦降解菌的筛选及其降解特性研究[J]. 中国农学通报, 2021, 37(14): 84-89. |
[11] | 刘颖, 魏敏, 杨平华, 耿丹丹. 明胶/PVA类肥料包膜材料的制备与环保性能研究[J]. 中国农学通报, 2021, 37(14): 90-96. |
[12] | 杜婵娟, 张晋, 刘铜, 李春牛, 杨迪, 潘连富, 付岗. 木霉菌剂对根际微生物及茉莉植株生长的作用[J]. 中国农学通报, 2021, 37(10): 60-64. |
[13] | 高旭华, 黄瑶珠, 谢东. 不同覆盖材料对花生养分吸收和土壤养分变化的影响[J]. 中国农学通报, 2020, 36(8): 55-59. |
[14] | 刘子璇, 石卉, 王平, 王沛颖, 朱健. 生物活性炭流化床对生物柴油废水的降解效应与化学势变[J]. 中国农学通报, 2020, 36(20): 77-82. |
[15] | 高静, 王楠, 张岗, 颜永刚, 孙涛, 张琳. 秦岭黄凤山村地区草本植物群落种间关联性分析[J]. 中国农学通报, 2020, 36(15): 48-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||