[1] |
沙晨燕, 谭娟, 王卿, 等. 不同类型河滨湿地甲烷和二氧化碳排放初步研究[J]. 生态环境学报, 2015, 24(7):1182-1190.
|
[2] |
李英臣, 宋长春. 氮磷输入对湿地生态系统碳蓄积的影响[J]. 土壤通报, 2012, 43(1):224-228.
|
[3] |
ZHOU L, ZHOU G S, JIA Q Y. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China[J]. Aquatic botany, 2009, 91(2):91-98.
doi: 10.1016/j.aquabot.2009.03.002
URL
|
[4] |
马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学:地球科学, 2011, 41(3):394-401.
|
[5] |
SONG C C, WANG Y Y, WANG Y S, et al. Carbon dynamics of wetland in the Sanjiang plain[J]. Chinese geographical science, 2003, 13(3):228-231.
doi: 10.1007/s11769-003-0021-8
URL
|
[6] |
NAIMAN R J, DECAMPS H. The ecology of interfaces: riparian zones[J]. Annual review of ecology and systematics, 1997, 28(1):621-658.
doi: 10.1146/ecolsys.1997.28.issue-1
URL
|
[7] |
DING W, CAI Z, WANG D. Preliminary budget of methane emissions from natural wetlands in China[J]. Atmospheric environment, 2004, 38(5):751-759.
doi: 10.1016/j.atmosenv.2003.10.016
URL
|
[8] |
张超凡, 盛连喜, 宫超, 等. 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响[J]. 生态学杂志, 2018, 37(2):304-311.
|
[9] |
杨早, 朱单, 陈槐, 等. 季节冻融对泥炭沼泽碳排放的影响研究进展[J]. 应用与环境生物学报, 2020, 26(5):1290-1298.
|
[10] |
姚允龙, 王蕾, 于洪贤, 等. 三江平原退耕小叶章湿地CO2和CH4排放通量特征[J]. 中国科技论文, 2017, 12(15):1698-1703.
|
[11] |
徐志伟, 肖荣波, 邓一荣, 等. 广州海珠湖城市湿地CO2通量特征[J]. 应用与环境生物学报, 2016, 22(1):13-19.
|
[12] |
朱金峰, 周艺, 王世新, 等. 白洋淀湿地生态功能评价及分区[J]. 生态学报, 2020, 40(2):459-472.
|
[13] |
张素珍, 田建文, 李贵宝. 白洋淀湿地面临的生态问题及生态恢复措施[J]. 水土保持通报, 2007, 27(3):146-150.
|
[14] |
王为东, 王亮, 聂大刚, 等. 白洋淀芦苇型水陆交错带水化学动态及其净化功能研究[J]. 生态环境学报, 2010, 19(3):537-543.
|
[15] |
常州市环境监测中心. HJ604-2017,环境空气总烃甲烷和非甲烷总烃的测定直接进样-气相色谱法[S]. 北京: 中国环境出版社, 2017:2-6.
|
[16] |
GB/T 18204.2-2014,公共场所卫生检验方法[S].
|
[17] |
鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2008: 22-79.
|
[18] |
牛翠云, 王树涛, 郭艳杰, 等. 白洋淀芦苇型水陆交错带湿地CH4和CO2的排放特征[J]. 江苏农业科学, 2018, 46(15):209-213.
|
[19] |
胡敏杰, 仝川, 邹芳芳. 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制[J]. 草业学报, 2015, 24(6):204-212.
|
[20] |
汪青, 刘敏, 侯立军, 等. 崇明东滩湿地CO2、CH4和N2O排放的时空差异[J]. 2010, 29(5):935-946.
|
[21] |
叶勇, 卢昌义, 林鹏. 海南岛和厦门红树林湿地CH4排放的时空变化[J]. 大气科学, 2000(24):152-156.
|
[22] |
沙晨燕, 王敏, 王卿, 等. 湿地碳排放及其影响因素[J]. 生态学杂志, 2011, 30(9):2072-2079.
|
[23] |
XING Y P, XIE P, YANG H, et al. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China[J]. Atmospheric environment, 2005, 39(30):5532-5540.
doi: 10.1016/j.atmosenv.2005.06.010
URL
|
[24] |
王德宣, 宋长春, 王毅勇, 等. 若尔盖高原沼泽湿地与草地二氧化碳通量的比较[J]. 应用生态学报, 2008, 19(2):285-289.
|
[25] |
舒晓晓, 刘智杰. 浅析农田温室气体排放的影响因素[J]. 中国农学通报, 2019, 35(35):100-103.
|
[26] |
MACDONALD J A, FLOWER D, HARGREAVES K J, et al. Methane emission rates from a northern wetland: response to temperature, water table and transport[J]. Atmospheric environment, 1998, 32(19):3219-3227.
doi: 10.1016/S1352-2310(97)00464-0
URL
|
[27] |
MORRISSEY L A, LIVINGSTON G P. Methane emissions from Alaska arctic tundra: As assessment of local spatial variability. Journal of geophysical research, 1992, 97:16661-16670.
doi: 10.1029/92JD00063
URL
|
[28] |
张广斌, 李香兰, 马静, 等. 水分管理对稻田土壤CH4产生、氧化及排放的影响[J]. 生态环境学报, 2009, 18(3):1066-1070.
|
[29] |
VANN C D, MEGONIGA J P. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species[J]. Biogeochemistry, 2003, 63:117-134.
doi: 10.1023/A:1023397032331
URL
|
[30] |
FREEMAN C, NEVISON G B, KANG H, et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J]. Soil biology & biochemistry, 2002, 34:61-67.
doi: 10.1016/S0038-0717(01)00154-7
URL
|
[31] |
BACHOON D, JONES R D. Potential rates of me than ogenesis in peat and marl saw grass wetlands in the Florida Everglades[J]. Soil biology & biochemistry, 1992, 24:21-27.
doi: 10.1016/0038-0717(92)90237-R
URL
|
[32] |
NYKÄNEN H, VASANDER H, HUTTUNEN J T, et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and soil, 2002, 242(1):147-155
doi: 10.1023/A:1019658428402
URL
|
[33] |
李英臣, 宋长春. 氮磷输入对湿地生态系统碳蓄积的影响[J]. 土壤通报, 2012, 43(1):224-229.
|
[34] |
陈槐, 周舜, 吴宁, 等. 湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006, 12(5):726-733.
|
[35] |
KIM S Y, VERAART A J, MEIMA -FRANKE M, et al. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments[J]. Geoderma, 2015, 259-260:354-361.
doi: 10.1016/j.geoderma.2015.03.015
URL
|
[36] |
丁维新, 蔡祖聪. 植物在CH4产生、氧化和排放中的作用[J]. 应用生态学报, 2003(8):176-181.
|
[37] |
BRIX H, SORRELL B K, LORENZEN B. Are Phagmites-dominated wetlands a net source or net source or net sink of greenhouse gases[J]. Aquatic botany, 2001, 69:313-324.
doi: 10.1016/S0304-3770(01)00145-0
URL
|
[38] |
HIROTA M, TANG Y, HU Q. Methane emissions from different vegetation zones in a Qinghai Tibetan Plateau wetland. Soil biology & biochemistry, 2004, 36:737-748.
doi: 10.1016/j.soilbio.2003.12.009
URL
|
[39] |
JOHNSON-RANDALL L A, FOOTE A L. Effects of managed impoundments and herbivory on wetland plant production and stand structure[J]. Wetlands, 2005, 25:38-50.
doi: 10.1672/0277-5212(2005)025[0038:EOMIAH]2.0.CO;2
URL
|
[40] |
BUBIER J L, CRILL P, MOSEDALE A, et al. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global biogeochemistry cycles, 2003, 17:1066-1081.
|
[41] |
GROGAN P, JONASSON S. Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Global Change Biology, 2006, 12:1479-1495
doi: 10.1111/gcb.2006.12.issue-8
URL
|
[42] |
卢妍, 宋长春, 王毅勇, 等. 植物对沼泽湿地生态系统CO2和CH4排放的影响[J]. 西北植物学报, 2007, 27(11):2306-2313.
|