中国农学通报 ›› 2022, Vol. 38 ›› Issue (26): 118-123.doi: 10.11924/j.issn.1000-6850.casb2021-0849
所属专题: 生物技术
司璐(), 吴彤, 甄锦程, 于洪佳, 刘瑶, 杨骁, 徐利剑()
收稿日期:
2021-09-02
修回日期:
2021-11-13
出版日期:
2022-09-15
发布日期:
2022-09-09
通讯作者:
徐利剑
作者简介:
司璐,女,1995年出生,河北承德人,硕士研究生,研究方向:植物保护。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:0451-86609487,E-mail: 基金资助:
SI Lu(), WU Tong, ZHEN Jincheng, YU Hongjia, LIU Yao, YANG Xiao, XU Lijian()
Received:
2021-09-02
Revised:
2021-11-13
Online:
2022-09-15
Published:
2022-09-09
Contact:
XU Lijian
摘要:
本研究旨在森林凋落物中尝试分离与鉴定具有抗菌与抗氧化活性的真菌资源。以大兴安岭森林凋落物为材料,利用稀释涂布平板法分离凋落物真菌,通过内部转录间隔区序列(ITS)进行真菌鉴定,利用平板打孔药剂扩散法测试抗菌活性,通过TLC-DPPH法进行提取物的抗氧化活性测定。本研究共分离得到65株真菌,它们分别隶属于47个属,54个分类单元,其中有16株真菌的序列相似性≤98%。这16株真菌中有8株有抗细菌活性,有10株有抗真菌活性,有6株菌的粗提物有抗氧化活性。发现3株真菌同时具有抗菌、抗氧化活性,它们最相近菌属分别为Phaeosphaeria、Cephalosporium和Ophiobolus。大兴安岭真菌资源丰富,本研究为抗菌及抗氧化的真菌天然资源的开发,提供了基础数据与备选菌株。
中图分类号:
司璐, 吴彤, 甄锦程, 于洪佳, 刘瑶, 杨骁, 徐利剑. 大兴安岭凋落物中可培养真菌分离、鉴定及活性筛选[J]. 中国农学通报, 2022, 38(26): 118-123.
SI Lu, WU Tong, ZHEN Jincheng, YU Hongjia, LIU Yao, YANG Xiao, XU Lijian. Isolation, Identification and Activity Screening of Culturable Fungi from Litter in the Greater Hinggan Mountains[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 118-123.
序号 | 菌株号 | 最相近菌种* | 相似性* |
---|---|---|---|
1 | SL098 | Phaeosphaeria sp. | 93.89% |
2 | SL503 | Cephalosporium gramineum | 92.03% |
3 | SL506 | Knufia tsunedae | 97.98% |
4 | SL514 | Peniophora sp. | 95.16% |
5 | SL518 | Pseudeurotium sp. | 96.99% |
6 | SL521 | Acremonium psammosporum | 94.32% |
7 | SL523 | Fusicladium eucalyptigenum | 89.23% |
8 | SL542 | Capronia acutiseta | 92.64% |
9 | SL544 | Pseudoarthrographis phlogis | 87.00% |
10 | SL708 | Polyphilus sieberi | 94.21% |
11 | SL710 | Pezicula sp. | 93.63% |
12 | SL721 | Berkleasmium sp. | 91.79% |
13 | SL723 | Ophiobolus cirsii | 95.01% |
14 | SL724 | Exophiala moniliae | 96.81% |
15 | SL726 | Piniphoma wesendahlina | 93.43% |
16 | SL728 | Herpotrichia parasitica | 95.54% |
序号 | 菌株号 | 最相近菌种* | 相似性* |
---|---|---|---|
1 | SL098 | Phaeosphaeria sp. | 93.89% |
2 | SL503 | Cephalosporium gramineum | 92.03% |
3 | SL506 | Knufia tsunedae | 97.98% |
4 | SL514 | Peniophora sp. | 95.16% |
5 | SL518 | Pseudeurotium sp. | 96.99% |
6 | SL521 | Acremonium psammosporum | 94.32% |
7 | SL523 | Fusicladium eucalyptigenum | 89.23% |
8 | SL542 | Capronia acutiseta | 92.64% |
9 | SL544 | Pseudoarthrographis phlogis | 87.00% |
10 | SL708 | Polyphilus sieberi | 94.21% |
11 | SL710 | Pezicula sp. | 93.63% |
12 | SL721 | Berkleasmium sp. | 91.79% |
13 | SL723 | Ophiobolus cirsii | 95.01% |
14 | SL724 | Exophiala moniliae | 96.81% |
15 | SL726 | Piniphoma wesendahlina | 93.43% |
16 | SL728 | Herpotrichia parasitica | 95.54% |
菌株号 | 丁香假单胞菌 | 青枯劳尔氏菌 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | S | Y | R | A | P | N | S | Y | R | A | ||
SL098 | — | — | — | ++ | — | — | +++ | — | — | ++ | — | — | |
SL503 | — | — | — | — | — | — | + | ++ | — | ++ | ++ | ++ | |
SL521 | — | — | — | — | — | — | — | — | — | ++ | — | — | |
SL523 | — | — | — | — | — | — | — | — | — | + | — | — | |
SL721 | — | — | — | — | — | — | ++ | ++ | — | — | — | — | |
SL723 | — | — | — | — | — | — | +++ | — | — | — | +++ | ++ | |
SL726 | — | — | — | — | — | — | — | — | — | + | — | — | |
SL728 | — | — | — | — | — | — | — | — | — | — | — | ++ |
菌株号 | 丁香假单胞菌 | 青枯劳尔氏菌 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | S | Y | R | A | P | N | S | Y | R | A | ||
SL098 | — | — | — | ++ | — | — | +++ | — | — | ++ | — | — | |
SL503 | — | — | — | — | — | — | + | ++ | — | ++ | ++ | ++ | |
SL521 | — | — | — | — | — | — | — | — | — | ++ | — | — | |
SL523 | — | — | — | — | — | — | — | — | — | + | — | — | |
SL721 | — | — | — | — | — | — | ++ | ++ | — | — | — | — | |
SL723 | — | — | — | — | — | — | +++ | — | — | — | +++ | ++ | |
SL726 | — | — | — | — | — | — | — | — | — | + | — | — | |
SL728 | — | — | — | — | — | — | — | — | — | — | — | ++ |
菌株号 | 立枯丝核菌 | 大斑病凸脐蠕孢菌 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | S | Y | R | A | P | N | S | Y | R | A | ||
SL098 | — | — | — | ++ | + | — | + | + | — | +++ | — | — | |
SL503 | — | + | + | — | — | ++ | — | + | + | + | + | + | |
SL521 | — | — | — | — | — | — | — | — | — | +++ | — | — | |
SL533 | — | — | — | — | — | — | — | — | — | ++ | — | — | |
SL544 | — | — | — | — | — | — | — | ++ | — | — | — | — | |
SL708 | + | + | + | — | + | — | — | — | — | — | — | — | |
SL710 | — | — | — | ++ | + | ++ | — | — | — | ++ | — | — | |
SL723 | ++ | — | — | — | + | + | ++ | — | — | — | ++ | — | |
SL726 | — | — | — | + | — | — | — | — | — | — | — | — | |
SL728 | — | — | — | — | — | + | — | — | — | — | — | — |
菌株号 | 立枯丝核菌 | 大斑病凸脐蠕孢菌 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | S | Y | R | A | P | N | S | Y | R | A | ||
SL098 | — | — | — | ++ | + | — | + | + | — | +++ | — | — | |
SL503 | — | + | + | — | — | ++ | — | + | + | + | + | + | |
SL521 | — | — | — | — | — | — | — | — | — | +++ | — | — | |
SL533 | — | — | — | — | — | — | — | — | — | ++ | — | — | |
SL544 | — | — | — | — | — | — | — | ++ | — | — | — | — | |
SL708 | + | + | + | — | + | — | — | — | — | — | — | — | |
SL710 | — | — | — | ++ | + | ++ | — | — | — | ++ | — | — | |
SL723 | ++ | — | — | — | + | + | ++ | — | — | — | ++ | — | |
SL726 | — | — | — | + | — | — | — | — | — | — | — | — | |
SL728 | — | — | — | — | — | + | — | — | — | — | — | — |
[1] |
HYDE K D, XU J, RAPIOr S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially[J]. Fungal diversity, 2019, 97(1):1-136.
doi: 10.1007/s13225-019-00430-9 URL |
[2] |
SCHMIT J P, MURPHY J F, Mueller G M. Macrofungal diversity of a temperate oak forest: a test of species richness estimators[J]. Canadian journal of botany, 1999, 77(7):1014-1027.
doi: 10.1139/b99-055 URL |
[3] |
KHIRALLA A, MOHAMED I, THOMAS J, et al. A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants[J]. Asian pacific journal of tropical medicine, 2015, 8(9):701-704.
doi: 10.1016/j.apjtm.2015.07.032 URL |
[4] |
ALY A H, DE BB AB A, Proksch P. Fifty years of drug discovery from fungi[J]. Fungal diversity, 2011, 50(1):3-19.
doi: 10.1007/s13225-011-0116-y URL |
[5] |
Skropeta, Danielle. Deep-sea natural products[J]. Natural product reports, 2008, 25(6):1131-1166
doi: 10.1039/b808743a pmid: 19030606 |
[6] |
HONG J H, JANG S, HEO Y M, et al. Investigation of marine-derived fungal diversity and their exploitable biological activities[J]. Marine drugs, 2015, 13(7):4137-4155.
doi: 10.3390/md13074137 URL |
[7] |
HUANG Z, NONG X, REN Z, et al. Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502[J]. Bioorganic & Medicinal chemistry letters, 2017, 27(4):787-791.
doi: 10.1016/j.bmcl.2017.01.032 URL |
[8] |
PANG X, ZHAO J Y, FANG X M, et al. Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities[J]. Journal of natural products, 2017, 80(10):2595-2601.
doi: 10.1021/acs.jnatprod.6b00878 URL |
[9] |
ABDEL-WAHAB N M, SCHARF S, ÖZKAYA F C, et al. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis[J]. Planta medica, 2019, 85(6):503-512.
doi: 10.1055/a-0835-2332 URL |
[10] |
TENNAKOON D, GENTEKAKI E, JEEWON R, et al. Life in leaf litter: Fungal community succession during decomposition[J]. Mycosphere, 2021, 12(1).406-429.
doi: 10.5943/mycosphere/12/1/5 URL |
[11] | 姜雪薇, 马大龙, 臧淑英,等. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 2021, 48(4):1093-1105. |
[12] | 刘博洋, 朱美齐, 李泽宇,等. 大兴安岭森林凋落物真菌及其次生代谢物活性研究[J]. 中国农学通报, 2019, 35(29):103-108. |
[13] | 张哲栋, 梁晶, 李泽宇,等. 大兴安岭北方森林凋落物真菌及其抗菌化合物[J]. 中国农学通报, 2021, 37(6):104-110. |
[14] | 邱天艺. 大兴安岭森林凋落物可培养真菌分离鉴定及物质分析:[D]. 哈尔滨: 黑龙江大学, 2021:28-31. |
[15] | 孟建宇, 杨帆, 冀锦华,等. 大兴安岭森林土壤中纤维素降解真菌的分离及产酶条件优化[J]. 黑龙江畜牧兽医, 2020(17):108-111,120,171. |
[16] |
YAN L, YE D, SHAO Z, et al. A Sterol and Spiroditerpenoids from a Penicillium sp. Isolated from a Deep Sea Sediment Sample[J]. Marine drugs, 2012, 10(2):497-508.
doi: 10.3390/md10020497 URL |
[17] |
LIU D S, RONG X G, KANG H H, et al. Raistrickiones A-E from a Highly Productive Strain of Penicillium raistrickii Generated through Thermo Change[J]. Marine drugs, 2018, 16(6):1-11.
doi: 10.3390/md16010001 URL |
[18] | 曾奇, 仲伟茂, 王发左. 深海来源真菌次级代谢产物研究进展[J]. 天然产物研究与开发, 2018, 30(3):501-514. |
[19] | 朱妍妍, 艾嫦, 张嘉,等. 具有生物活性的植物内生真菌次生代谢产物[J]. 化学进展, 2011, 23(4):704-730. |
[20] |
LIANG J, LIU B Y, LI Z Y, et al. Myxotrichum albicans, a new slowly-growing species isolated from forest litters in China[J]. Mycoscience, 2019, 60(4):232-236.
doi: 10.1016/j.myc.2019.03.002 URL |
[21] |
MÖLLER E M, BAHNWEG G, SANDERMANN H, et al. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues[J]. Nucleic acids research, 1992, 20(22):6115-6116.
doi: 10.1093/nar/20.22.6115 URL |
[22] | WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR protocols: A guide to methods and applications, 1990, 18(1):315-322. |
[23] | 周立刚. 植物抗菌化合物[M]. 北京: 中国农业科学技术出版社, 2005:74-82. |
[24] | 王梅霖, 张志国. 玫瑰黄酮的提取及抗氧化活性的研究[J]. 中国调味品, 2021, 46(7):157-160,170. |
[25] | 李泽宇, 张志, 邱天艺,等. 来源于大兴安岭多年冻土可培养真菌及其发酵物的生物活性[J]. 天然产物研究与开发, 2020, 32(3):453-463. |
[26] |
El-Demerdash A. Chemical diversity and biological activities of Phaeosphaeria fungi genus: a systematic review[J]. Journal of Fungi, 2018, 4(4):1-10.
doi: 10.3390/jof4010001 URL |
[27] | 秦铭铭, 耿燕, 栾雪,等. 药食用真菌提取物抗氧化活性研究[J]. 食品与生物技术学报, 2017, 36(1):80-86. |
[28] | Zhang H, Bai X, Wu B. Evaluation of antimicrobial activities of extracts of endophytic fungi from Artemisia annua[J]. Bangladesh journal of pharmacology, 2012, 7(2):120-123. |
[29] |
ZHANG H W, HUANG W Y, Chen J R, et al. Cephalosol: An antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB‐E007[J]. Chemistry-A European Journal, 2008, 14(34):10670-10674.
doi: 10.1002/chem.200801000 URL |
[30] |
CHIN N X, NEU H C. In vitro antimicrobial activity of the new antibiotic vermisporin[J]. European journal of clinical microbiology and infectious diseases, 1992, 11(8):755-757.
doi: 10.1007/BF01989986 URL |
[31] | TAYONE W C, TANAKA K, TAKADA N. Ophiobolides, Polyketides Isolated from Ophiobolus sp. KTC 2293[J]. Chiang Mai journal of science, 2016, 43(3):477-483. |
[1] | 邵雪花, 赖多, 肖维强, 贺涵, 刘传和, 匡石滋. 不同干燥方法对番石榴果实品质及抗氧化活性的影响[J]. 中国农学通报, 2022, 38(6): 134-140. |
[2] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[3] | 甄锦程, 穆玉婷, 司璐, 于洪佳, 都婷婷, 单体江, 徐利剑. 凋落物真菌Berkleasmium sp.及其螺二萘类化合物抗菌活性的研究[J]. 中国农学通报, 2022, 38(22): 115-120. |
[4] | 王彦平, 金磊, 高健, 王志春. 气候变化对大兴安岭西麓林牧交错带木本植物物候期的影响[J]. 中国农学通报, 2022, 38(20): 29-37. |
[5] | 邱天艺, 徐悦, 甄锦程, 司璐, 于洪佳, 穆玉婷, 徐利剑. 大兴安岭森林凋落物的活性真菌及其代谢产物研究[J]. 中国农学通报, 2022, 38(18): 122-127. |
[6] | 张哲栋, 梁晶, 李泽宇, 高思禹, 邱天艺, 单体江, 徐利剑. 大兴安岭北方森林凋落物真菌及其抗菌化合物[J]. 中国农学通报, 2021, 37(6): 104-110. |
[7] | 韩立霞, 魏圣可, 冯文娟. 胶霉毒素菌渣的抗菌活性及其应用的研究[J]. 中国农学通报, 2021, 37(30): 106-110. |
[8] | 许丹丹, 徐雅琴, 隽行, 周守标, 汪昌保, 杭华. 富硒菊芋多糖的提取及其体外抗氧化活性研究[J]. 中国农学通报, 2021, 37(30): 121-127. |
[9] | 元超, 舒雪纯, 张影波, 王凯, 谢小丽, 徐子琪, 袁媛. 艾纳香内生真菌抗细菌和炭疽菌的活性研究[J]. 中国农学通报, 2021, 37(23): 38-44. |
[10] | 艾仄宜, 穆兵, 李松, 唐君, 万青, 李荣林, 杨亦扬. 不同茶树品种雨花茶适制性评价及其呈味特征研究[J]. 中国农学通报, 2021, 37(13): 115-121. |
[11] | 魏东伟, 谢娟娟, 周亚萍, 孙武勇, 任园宇. 基于纳米金合成法评估玉米幼苗耐旱性[J]. 中国农学通报, 2020, 36(34): 5-14. |
[12] | 田宝星, 宫丽娟, 滕潘, 陈晶, 杨帆, 张洋. 大兴安岭蓝莓生长气候条件分析[J]. 中国农学通报, 2020, 36(27): 99-105. |
[13] | 邹鸿飞, 舒晓燕, 张月琴, 刘媛, 杨文玉, 赵桂英. D-101大孔树脂对香椿叶中黄酮类成分的分离纯化及抗氧化活性研究[J]. 中国农学通报, 2020, 36(24): 159-164. |
[14] | 叶若柏, 吴珍红, 缪晓青. 具有抗肿瘤和抗菌活性的长效改性蜂毒肽(GPG)设计及其生物活性评价[J]. 中国农学通报, 2020, 36(16): 34-41. |
[15] | 邓雪萍,傅文红,陈清乐,郑正. 小叶榕抗菌活性内生菌发酵条件的优化[J]. 中国农学通报, 2019, 35(8): 17-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||