中国农学通报 ›› 2020, Vol. 36 ›› Issue (16): 34-41.doi: 10.11924/j.issn.1000-6850.casb20200200116
所属专题: 生物技术
收稿日期:
2020-02-17
修回日期:
2020-04-18
出版日期:
2020-06-05
发布日期:
2020-05-20
通讯作者:
缪晓青
基金资助:
Ye Ruobai1,2(), Wu Zhenhong3, Miao Xiaoqing1,3,*(
)
Received:
2020-02-17
Revised:
2020-04-18
Online:
2020-06-05
Published:
2020-05-20
Contact:
Miao Xiaoqing
摘要:
为获得低毒、具有抗肿瘤和抗菌活性的长效改性蜂毒肽,提高蜂毒肽的临床应用价值,本试验以多肽构效关系为指导,选择两亲性α-螺旋型阳离子多肽分子结构为改性蜂毒肽的设计模板,用杂合肽法设计了一系列多肽序列,用生物信息学工具比较它们的生物活性并进行初选,再用固相法合成初选所得少量序列的多肽,比对合成多肽的生物活性,精选获得生物活性高的多肽。实验表明精选所得多肽具有长效性,确定其为设计目标肽(GPG),当GPG浓度为150 μmol/L时,其溶血率为零;浓度为33.3 μmol/L时,其对小鼠肝癌细胞(H22)、人肝癌细胞(SMMC-7721)和人结肠癌细胞(SW-1116)的抑癌率分别为(78.0±0.6)%、(74.0±1.2)%、(74.0±0.5)%;浓度为100 μmol/L时,其对大肠杆菌的抑菌圈直径为(15.18±0.30) mm;当注射GPG(100 μmol/只)时,能延长致死剂量大肠杆菌(5×107个/只)攻毒的小鼠寿命63.2 h。该设计省时省力地优选得溶血活性低、抗癌抗菌活性强、半衰期长的全新结构目标肽GPG,其有临床应用前景;以GRGDSP肽链为多肽氮端端基,可提高其生物活性及半衰期。
中图分类号:
叶若柏, 吴珍红, 缪晓青. 具有抗肿瘤和抗菌活性的长效改性蜂毒肽(GPG)设计及其生物活性评价[J]. 中国农学通报, 2020, 36(16): 34-41.
Ye Ruobai, Wu Zhenhong, Miao Xiaoqing. Design and Bioactivity Evaluation of Long-effective Modified Melittin (GPG) with Antitumor and Antibacterial Function[J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 34-41.
设计序列号 | 设计多肽的氨基酸序列 | 简记 | 整体结构参数 | ||||
---|---|---|---|---|---|---|---|
净正电荷数 | 疏水力矩 | 疏水性 | α-螺旋度 | 两亲性 | |||
1 | RGDSFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.420 | 0.320 | 50.0 | 是 | |
2 | GRGDSPFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
3 | GRGDSPSFLHLAKKPGKAFPAVLKVLTTG | +4 | 0.572 | 0.526 | 61.1 | 是 | |
4 | RGDFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
5 | GRGDSPKFLHSAKKFGKAFPAVLKVLTTG | GPG | +5 | 0.565 | 0.377 | 58.0 | 是 |
6 | GRGDSPKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
7 | GRGDSPKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 44.4 | 是 | |
8 | RGDKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
9 | RGDKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 55.6 | 是 | |
10 | RGDKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
11 | GRGDSPKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
12 | GRGDSPKWKLFKKIPAVLKVLTTG | +5 | 0.395 | 0.554 | 44.4 | 是 | |
13 | RGDKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
14 | GRGDSPKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
15 | GRGDSPKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.239 | 0.528 | 61.1 | 是 | |
16 | RGDKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.214 | 0.432 | 44.4 | 是 | |
17 | RGDKWKLFKKIPKFLHLAKKF | RP18 | +7 | 0.333 | 0.332 | 52.4 | 是 |
18 | RGDKWKLFKKIIGIKFLHSAKKF | +7 | 0.202 | 0.505 | 50.0 | 是 | |
19 | GRGDSPKWKLFKKIIGIKFLHLAKKF | +7 | 0.298 | 0.602 | 44.4 | 是 | |
20 | RGDKFLHSAKKFGKAFPAVLKVLTTG | RPG | +5 | 0.392 | 0.448 | 50.0 | 是 |
21 | RGDKWKLFKKIPAVLKVLTTG | RCAG | +5 | 0.395 | 0.554 | 44.4 | 是 |
设计序列号 | 设计多肽的氨基酸序列 | 简记 | 整体结构参数 | ||||
---|---|---|---|---|---|---|---|
净正电荷数 | 疏水力矩 | 疏水性 | α-螺旋度 | 两亲性 | |||
1 | RGDSFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.420 | 0.320 | 50.0 | 是 | |
2 | GRGDSPFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
3 | GRGDSPSFLHLAKKPGKAFPAVLKVLTTG | +4 | 0.572 | 0.526 | 61.1 | 是 | |
4 | RGDFLHLAKKFGKAFPAVLKVLTTG | +4 | 0.557 | 0.596 | 66.7 | 是 | |
5 | GRGDSPKFLHSAKKFGKAFPAVLKVLTTG | GPG | +5 | 0.565 | 0.377 | 58.0 | 是 |
6 | GRGDSPKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
7 | GRGDSPKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 44.4 | 是 | |
8 | RGDKFLHLAKKFGKAFIGIAVLKVLTTG | +5 | 0.451 | 0.594 | 38.9 | 是 | |
9 | RGDKFLHSAKKFGKAFIGIAVLKVLTTG | +5 | 0.439 | 0.497 | 55.6 | 是 | |
10 | RGDKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
11 | GRGDSPKFLHLAKKFGKAFPAVLKVLTTG | +5 | 0.589 | 0.473 | 38.9 | 是 | |
12 | GRGDSPKWKLFKKIPAVLKVLTTG | +5 | 0.395 | 0.554 | 44.4 | 是 | |
13 | RGDKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
14 | GRGDSPKWKLFKKIEKVGQPAVLKVLTTGL | +5 | 0.283 | 0.328 | 50.0 | 是 | |
15 | GRGDSPKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.239 | 0.528 | 61.1 | 是 | |
16 | RGDKFLHSAKKFKAFMMEAVLKVLTT | +5 | 0.214 | 0.432 | 44.4 | 是 | |
17 | RGDKWKLFKKIPKFLHLAKKF | RP18 | +7 | 0.333 | 0.332 | 52.4 | 是 |
18 | RGDKWKLFKKIIGIKFLHSAKKF | +7 | 0.202 | 0.505 | 50.0 | 是 | |
19 | GRGDSPKWKLFKKIIGIKFLHLAKKF | +7 | 0.298 | 0.602 | 44.4 | 是 | |
20 | RGDKFLHSAKKFGKAFPAVLKVLTTG | RPG | +5 | 0.392 | 0.448 | 50.0 | 是 |
21 | RGDKWKLFKKIPAVLKVLTTG | RCAG | +5 | 0.395 | 0.554 | 44.4 | 是 |
多肽浓度 | GPG | RPG | RP18 | RCAG |
---|---|---|---|---|
150.00 μmol/L | 0 | 0 | 4.0±0.2 | 0 |
75.00 μmol/L | 0 | 0 | 1.8±0.2 | 0 |
37.50 μmol/L | 0 | 0 | 0.2±0.1 | 0 |
18.75 μmol/L | 0 | 0 | 0 | 0 |
9.38 μmol/L | 0 | 0 | 0 | 0 |
4.69 μmol/L | 0 | 0 | 0 | 0 |
多肽浓度 | GPG | RPG | RP18 | RCAG |
---|---|---|---|---|
150.00 μmol/L | 0 | 0 | 4.0±0.2 | 0 |
75.00 μmol/L | 0 | 0 | 1.8±0.2 | 0 |
37.50 μmol/L | 0 | 0 | 0.2±0.1 | 0 |
18.75 μmol/L | 0 | 0 | 0 | 0 |
9.38 μmol/L | 0 | 0 | 0 | 0 |
4.69 μmol/L | 0 | 0 | 0 | 0 |
多肽浓度 | 对H22抑癌率 | 对SMMC-7721抑癌率 | 对SW-1116抑癌率 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | |||
33.3 μmol/L | 78.0±0.6 | 74.0±1.4 | 71.0±1.4 | 70.0±1.0 | 74.0±1.2 | 72.0±1.3 | 71.0±1.6 | 70.0±1.3 | 74.0±0.5 | 72.0±1.6 | 72.0±1.5 | 71.0±1.6 | ||
16.7 μmol/L | 56.0±0.9 | 51.3±1.2 | 48.5±1.1 | 48.1±1.1 | 51.0±1.6 | 49.6±1.5 | 47.2±1.5 | 46.7±0.8 | 50.0±1.5 | 48.3±1.2 | 48.5±1.4 | 47.9±1.4 | ||
8.3 μmol/L | 32.0±1.4 | 26.5±1.4 | 24.7±1.4 | 24.4±0.8 | 25.0±1.3 | 24.2±1.4 | 22.3±1.4 | 21.9±1.4 | 22.5±1.4 | 20.6±1.5 | 22.0±1.4 | 21.9±1.7 | ||
4.2 μmol/L | 20.1±1.6 | 15.4±1.5 | 12.6±1.0 | 12.4±1.0 | 13.5±1.0 | 11.7±1.2 | 10.5±1.3 | 10.3±1.4 | 10.7±0.6 | 9.8±0.8 | 11.1±0.5 | 11.0±0.8 | ||
2.1 μmol/L | 3.0±1.1 | 1.7±0.8 | 0.9±0.6 | 0.8±0.4 | 1.2±0.6 | 0.8±0.6 | 0.7±0.4 | 0.7±0.5 | 0.8±0.4 | 0.6±0.3 | 0.7±0.3 | 0.7±0.7 |
多肽浓度 | 对H22抑癌率 | 对SMMC-7721抑癌率 | 对SW-1116抑癌率 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | GPG | RPG | RP18 | RCAG | |||
33.3 μmol/L | 78.0±0.6 | 74.0±1.4 | 71.0±1.4 | 70.0±1.0 | 74.0±1.2 | 72.0±1.3 | 71.0±1.6 | 70.0±1.3 | 74.0±0.5 | 72.0±1.6 | 72.0±1.5 | 71.0±1.6 | ||
16.7 μmol/L | 56.0±0.9 | 51.3±1.2 | 48.5±1.1 | 48.1±1.1 | 51.0±1.6 | 49.6±1.5 | 47.2±1.5 | 46.7±0.8 | 50.0±1.5 | 48.3±1.2 | 48.5±1.4 | 47.9±1.4 | ||
8.3 μmol/L | 32.0±1.4 | 26.5±1.4 | 24.7±1.4 | 24.4±0.8 | 25.0±1.3 | 24.2±1.4 | 22.3±1.4 | 21.9±1.4 | 22.5±1.4 | 20.6±1.5 | 22.0±1.4 | 21.9±1.7 | ||
4.2 μmol/L | 20.1±1.6 | 15.4±1.5 | 12.6±1.0 | 12.4±1.0 | 13.5±1.0 | 11.7±1.2 | 10.5±1.3 | 10.3±1.4 | 10.7±0.6 | 9.8±0.8 | 11.1±0.5 | 11.0±0.8 | ||
2.1 μmol/L | 3.0±1.1 | 1.7±0.8 | 0.9±0.6 | 0.8±0.4 | 1.2±0.6 | 0.8±0.6 | 0.7±0.4 | 0.7±0.5 | 0.8±0.4 | 0.6±0.3 | 0.7±0.3 | 0.7±0.7 |
[1] | Lin J, Xia L, Liang J , et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance[J]. J Exp Clin Cancer Res, 2019; 38(1):218-230. |
[2] | Masson F, Zaidman-Rémy A, Heddi A . Antimicrobial peptides and cell processes tracking endosymbiont dynamics[J]. Philoso- phical Transactions of the Royal Society B: Biological Sciences, 2016,371:1-9. |
[3] |
Moravej H, Moravej Z, Yazdanparast M , et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria[J]. Microbial Drug Resistance, 2018,24(6):747-767.
doi: 10.1089/mdr.2017.0392 URL |
[4] | Liu M Y, Liu S S, Fu C , et al. Design and antitumor activity of novel antitumor peptide RGD-T-La(FS) chimera from catesbeiana[J]. Chin J Vet Sci Jan, 2018,38(1):39-50. |
[5] | Li J G, Liu S P, Lakshminarayanan R , et al. Molecular simulation suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability[J]. Biochimica et Biophysica Acta, 2013,1828(3):1112-1121. |
[6] | Nada I, Mario N, Filomena G , et al. Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences[J]. Biochimica et Biophysica Acta, 2013,1828(3):1004-1012. |
[7] |
Brown K L , Poon G F T, Birkenhead D,et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses[J]. Journal of Immunology, 2011,186(9):5497-5505.
doi: 10.4049/jimmunol.1002508 URL |
[8] |
Wu R J, Wang Q, Zheng Z J , et al. Design, characterization and expression of a novel hybrid peptides melittin(1-13)-LL37(17-30)[J]. Molecular Biology Reports, 2014,41(7):4163-4169.
doi: 10.1007/s11033-013-2900-0 URL |
[9] | 李莉, 张云, 倪京满 . 抗肿瘤活性的新型高效细胞穿膜肽[Cys-CPT2,9] penetratin的设计及活性评价 [J]. 药学学报, 2017,52(5):802-808. |
[10] | 管玉霞, 罗泓, 王锡平 . 穿膜肽TAT-PTD的固相合成及其与DNA相互作用的研究[J]. 中山大学学报:自然科学版, 2010,49(Z1):94-98. |
[11] |
Xi D, Teng D, Wang X , et al. Design, expression and characterization of the hybrid antimicrobial peptide LHP7, connected by a flexible linker, against staphylococcus and stereptococcus[J]. Process Biochemistry, 2013,48(3):453-461.
doi: 10.1016/j.procbio.2013.01.008 URL |
[12] | 葛璐, 邱立朋, 单晓甜 , 等. Heparosan多糖聚合物胶束的制备及体外抗肿瘤活性[J]. 药学学报, 2018,53(4):621-629. |
[13] | 周丽娜, 王莉莉, 张永娜 , 等. 2株放线菌的抗菌活性及分类学地位[J]. 中国农学通报, 2015,31(11):182-189. |
[14] | 杨霞, 张殿卿, 宋佳玮 , 等. 合成绵羊抗菌肽NK-Lysin抗菌活性及其对雏鸡沙门氏菌攻毒的治疗效果研究[J]. 中国畜牧兽医, 2017,44(9):2739-2746. |
[15] |
Dutta P, Das S . Mammalian Antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation[J]. Curr Top Med Chem, 2016,16(1):99-129.
doi: 10.2174/1568026615666150703121819 URL |
[16] | Hasan M , Moghal M M R, Saha S K, et al. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranesn[J]. Biophys Rev, 2019,11(3):431-448. |
[17] |
Kumar P, Kizhakkedathu J N, Straus S K . Antimicrobial peptides: diversity, mechanism of action and strate gies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018; 8(1):4-27.
doi: 10.3390/biom8010004 URL |
[18] |
Raid A A, Yazeed A S, Ayesha M , et al. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains[J]. Saudi Journal of Biological Sciences, 2014,21(2):147-151.
doi: 10.1016/j.sjbs.2013.09.003 URL |
[19] |
Vermeer L S, Lan Y, Abbate V , et al. Conformational flexibility determines selectivity and antibacterial, antiplasmodial,and anticancer potency of cationic α-helical peptides[J]. J Biol Chem, 2012,287(41):34120-34133.
doi: 10.1074/jbc.M112.359067 URL |
[20] |
Nan Y H, Park K H, Park Y , et al. Investigating the effects of positive charge and hydrophobicity on the cell selectivity mechanism of action and anti-innammatory activity of a try-rich antimicrobial peptide indolicidin[J]. FEMS Microbiol lett, 2009,292(1):134-140.
doi: 10.1111/fml.2009.292.issue-1 URL |
[21] |
Shi W, Li C Y, Li M , et al. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice[J]. Appl Microbiol Biotechnol, 2016,100(11) : 5059-5067.
doi: 10.1007/s00253-016-7400-4 URL |
[22] | Gabriela C V B, Viviane N, Suzanna F R , et al. Characterization of peptides from capsicum annuum hybrid seeds with inhibitory activity against α-amylase, serine proteinases and fungi[J]. The Protein Journal, 2015,34(2):122-129. |
[23] |
Hashimoto S, Taguchi S . Activity improvement of antimicrobial peptides by a chemical modification approach: toward the creation of novel types of antimicrobial agents[J]. Mini-reviews In Organic Chemistry, 2010,7(4):282-289.
doi: 10.2174/157019310792246373 URL |
[24] |
Choi N, Kim S M, Hong K S , et al. The use of the fusion protein RGD-HAS-TIMP2 as a tumor targeting imaging probe for SPECT and PET[J]. Biomaterials, 2011,32(29):7151-7158.
doi: 10.1016/j.biomaterials.2011.06.007 URL |
[25] |
Powers D B, Amersdorfer P, Powl M , et al. Expression of single-chain Fv-Fcfusions in Pichia pastoris[J]. J Immunol Methods, 2001,251(122):123-135.
doi: 10.1016/S0022-1759(00)00290-8 URL |
[26] | Maccari G, Di L M, Nifosí R , et al. Antimicrobial peptides design by evolutionary multiobjective optimization[J]. PLoS Comput Biol, 2013,9(9):1-12. |
[27] | Zelezetsky I, Tossi A . Alpha-helical antimicrobial peptides- using a sequence template to guide structure activity relationship studies[J]. Biochim Bioph Acta(BBA)-Biomembr, 2006,1758(9):1436-1449. |
[28] |
黄宜兵, 翟乃翠, 高贵 , 等. 净电荷对螺旋型抗癌肽生物活性的影响[J]. 高等学校化学学报, 2012,33(6):1252-1258.
doi: 10.3969/j.issn.0251-0790.2012.06.022 URL |
[29] |
Oren Z, Shai Y . Mode of action of linear amphipathic alpha-helical antimicrobial peptides[J]. Biopolymers, 1998,47(6):451-463.
doi: 10.1002/(SICI)1097-0282(1998)47:6<>1.0.CO;2-W URL |
[30] |
Dathe M, Nikolenko H, Meyer J , et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge[J]. FEBS Lett, 2001,501:146-150.
doi: 10.1016/S0014-5793(01)02648-5 URL |
[1] | 房佳敏, 曾伟民, 张彦龙. 不同产地黄芩主要化学成分含量及抗肿瘤活性比较研究[J]. 中国农学通报, 2022, 38(4): 120-126. |
[2] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[3] | 司璐, 吴彤, 甄锦程, 于洪佳, 刘瑶, 杨骁, 徐利剑. 大兴安岭凋落物中可培养真菌分离、鉴定及活性筛选[J]. 中国农学通报, 2022, 38(26): 118-123. |
[4] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. |
[5] | 甄锦程, 穆玉婷, 司璐, 于洪佳, 都婷婷, 单体江, 徐利剑. 凋落物真菌Berkleasmium sp.及其螺二萘类化合物抗菌活性的研究[J]. 中国农学通报, 2022, 38(22): 115-120. |
[6] | 邱天艺, 徐悦, 甄锦程, 司璐, 于洪佳, 穆玉婷, 徐利剑. 大兴安岭森林凋落物的活性真菌及其代谢产物研究[J]. 中国农学通报, 2022, 38(18): 122-127. |
[7] | 张哲栋, 梁晶, 李泽宇, 高思禹, 邱天艺, 单体江, 徐利剑. 大兴安岭北方森林凋落物真菌及其抗菌化合物[J]. 中国农学通报, 2021, 37(6): 104-110. |
[8] | 韩立霞, 魏圣可, 冯文娟. 胶霉毒素菌渣的抗菌活性及其应用的研究[J]. 中国农学通报, 2021, 37(30): 106-110. |
[9] | 元超, 舒雪纯, 张影波, 王凯, 谢小丽, 徐子琪, 袁媛. 艾纳香内生真菌抗细菌和炭疽菌的活性研究[J]. 中国农学通报, 2021, 37(23): 38-44. |
[10] | 周艳, 张聪, 赵丹丹. 食用菌多糖的结构修饰及其修饰后的抗肿瘤活性研究进展[J]. 中国农学通报, 2020, 36(6): 89-92. |
[11] | 邓雪萍,傅文红,陈清乐,郑正. 小叶榕抗菌活性内生菌发酵条件的优化[J]. 中国农学通报, 2019, 35(8): 17-22. |
[12] | 韩 笑,孙旭梅,王璐文,姜菊瑞,孟 威. 7种木腐菌生物活性检测[J]. 中国农学通报, 2015, 31(28): 141-145. |
[13] | 康建锋,刘桂琼,刘胜敏,姜勋平. 山羊β-防御素表达载体的构建及产物的活性鉴定[J]. 中国农学通报, 2015, 31(2): 40-44. |
[14] | 周丽娜,王莉莉,张永娜,杜春梅. 2株放线菌的抗菌活性及分类学地位[J]. 中国农学通报, 2015, 31(11): 182-189. |
[15] | 毕影东 李炜 肖佳雷 李琬 刘明 刘淼 张必弦 林红 来永才. 大豆分子育种现状、挑战与展望[J]. 中国农学通报, 2014, 30(6): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||