 
 中国农学通报 ›› 2020, Vol. 36 ›› Issue (35): 22-27.doi: 10.11924/j.issn.1000-6850.casb20191200953
        
               		刘荣林1,2,3( ), 蔡柏岩1,2(
), 蔡柏岩1,2( ), 葛菁萍1,3(
), 葛菁萍1,3( )
)
                  
        
        
        
        
    
收稿日期:2019-12-16
									
				
											修回日期:2020-02-10
									
				
									
				
											出版日期:2020-12-15
									
				
											发布日期:2020-12-18
									
			通讯作者:
					蔡柏岩,葛菁萍
							作者简介:刘荣林,男,1996年出生,山东人,硕士,研究方向:微生物生态学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,E-mail: 基金资助:
        
               		Liu Ronglin1,2,3( ), Cai Baiyan1,2(
), Cai Baiyan1,2( ), Ge Jingping1,3(
), Ge Jingping1,3( )
)
			  
			
			
			
                
        
    
Received:2019-12-16
									
				
											Revised:2020-02-10
									
				
									
				
											Online:2020-12-15
									
				
											Published:2020-12-18
									
			Contact:
					Cai Baiyan,Ge Jingping  			     					     	
							摘要:
在生物圈中,合作是普遍存在的,对于不同物种之间合作的研究,人们也做出了许多努力。研究发现,丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)、根瘤菌和解磷细菌对植物和土壤发挥着积极的作用。本文主要研究了AMF、根瘤菌和解磷细菌之间的合作共生关系及其相互作用,并归纳了接种AMF、解磷细菌和根瘤菌对植物生长、土壤修复和微生物生长的影响。总结了该三种微生物双接种的优势,进一步分析了AMF、解磷细菌和根瘤菌三者之间的相互作用,以及接种后对植物生长和周围土壤状况的影响。最后,提出了对AMF、解磷细菌和根瘤菌之间相互作用的主要研究方向。
中图分类号:
刘荣林, 蔡柏岩, 葛菁萍. 丛枝菌根真菌、根瘤菌和解磷细菌之间相互作用的研究进展[J]. 中国农学通报, 2020, 36(35): 22-27.
Liu Ronglin, Cai Baiyan, Ge Jingping. The Interaction of Arbuscular Mycorrhizal Fungi, Rhizobia and Phosphate Solubilizing Bacteria: Research Progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 22-27.
| [1] | Fan Q J, Liu J H. Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata[J]. Acta Physiologiae Plantarum, 2011,33(4):1533-1542. | 
| [2] | Krishnamoorthy R, Kim K, Subramanian P, et al. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil[J]. Agriculture, Ecosystems & Environment, 2016(231):233-239. | 
| [3] | Park J H, Bolan N, Megharaj M, et al. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J]. Journal of environmental management, 2011,92(4):1115-1120. doi: 10.1016/j.jenvman.2010.11.031 URL pmid: 21190789 | 
| [4] | Jeong S, Moon H S, Nam K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil[J]. Chemosphere, 2012,88(2):204-210. doi: 10.1016/j.chemosphere.2012.03.013 URL pmid: 22472099 | 
| [5] | Zhang L, Xu M, Liu Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytologist, 2016,210(3):1022-1032. | 
| [6] | Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria[J]. Applied Microbiology and Biotechnology, 2011,89(4):917-930. doi: 10.1007/s00253-010-3004-6 URL pmid: 21104242 | 
| [7] | Schubler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution[J]. Mycological research, 2001,105(12):1413-1421. doi: 10.1017/S0953756201005196 URL | 
| [8] | Wu Q S, He J D, Srivastava A, et al. Mycorrhiza enhances drought tolerance of citrus by altering root fatty acid compositions and their saturation levels[J]. Tree physiology, 2019,231:233-239 | 
| [9] | 李淑敏, 武帆. 大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用[J]. 植物营养与肥料学报, 2011,17(1):110-116. doi: 10.11674/zwyf.2011.0115 URL | 
| [10] | Ren A T, Zhu Y, Chen Y L, et al. Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings[J]. Environmental and Experimental Botany, 2019,22(16):261-270. | 
| [11] | Berreck M, Haselwandter K. Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants[J]. Mycorrhiza, 2001,10(6):275-280. doi: 10.1007/s005720000089 URL | 
| [12] | Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications[J]. Journal of experimental botany, 2016,67(22):6253-6265. doi: 10.1093/jxb/erw403 URL pmid: 27799283 | 
| [13] | Augé R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001,11(1):3-42. | 
| [14] | Zhang Z, Mallik A, Zhang J, et al. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates[J]. Soil and Tillage Research, 2019,194(1):155-162. | 
| [15] | Eulenstein F, Tauschke M, Behrendt A, et al. The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops[J]. Horticulturae, 2017,3(1):8-16. | 
| [16] | Vestberg M, Kukkonen S, Saari K, et al. Microbial inoculation for improving the growth and health of micropropagated strawberry[J]. Applied Soil Ecology, 2004,27(3):243-258. | 
| [17] | 刘世亮, 骆永明, 丁克强, 等. 菌根真菌对土壤中有机污染物的修复研究[J]. 地球科学进展, 2004,19(2):197-203. | 
| [18] | 谭何新, 肖玲, 周正, 等. 青蒿素生物合成分子机制及调控研究进展[J]. 中国中药杂志, 2017,42(1):10-19. | 
| [19] | Chaudhary V, Kapoor R, Bhatnagar A. Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L[J]. Applied Soil Ecology, 2008,40(1):174-181. | 
| [20] | Anil K, Shukla A, Hashm13 S, et al. Effect of trees on colonization of intercrops by vesicular arbuscular mycorrhizae in agroforestry systems[J]. Annals of Agricultural Research, 2011,16(10):166-173. | 
| [21] | 李玲, 沈宝宇, 张天静, 等. 根瘤菌对生态农业的重要意义及其影响因素[J]. 园艺与种苗, 2019,39(3):72-75. | 
| [22] | 韩梅. 蚕豆根瘤菌耐旱耐盐碱性研究[J]. 青海大学学报, 2019,37(4):35-41. | 
| [23] | Guo Y, Ni Y, Huang J. Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China[J]. Tropical Grasslands, 2010,44:109-114. | 
| [24] | Broos K, Beyens H, Smolders E. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant[J]. Soil Biology and Biochemistry, 2005,37(3):573-579. | 
| [25] | Schwember A R, Schulze J, Del Pozo A, et al. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules[J]. Plants, 2019,8(9):333-341. | 
| [26] | Saliou Sarr P, Fujimoto S, Yamakawa T. Nodulation, Nitrogen Fixation and Growth of Rhizobia-Inoculated Cowpea (Vignaunguiculata L. Walp) In Relation with External Nitrogen and Light Intensity[J]. International Journal of Plant Biology & Research, 2015,12(05):31-39. | 
| [27] | Remy W, Taylor T N, Hass H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(25):1181-1183. | 
| [28] | Xavier L J, Germida J J. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition[J]. Biology and Fertility of Soils, 2003,37(5):261-267. | 
| [29] | Haro H, Sanon K B, Le Roux C, et al. Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso[J]. Symbiosis, 2018,74(2):107-120. | 
| [30] | Abd-Alla M H, El-Enany A W E, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil[J]. Microbiological Research, 2014,169(1):49-58. doi: 10.1016/j.micres.2013.07.007 URL pmid: 23920230 | 
| [31] | Valdenegro M, Barea J, AZCóN R. Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area[J]. Plant Growth Regulation, 2001,34(2):233-240. doi: 10.1023/A:1013323529603 URL | 
| [32] | Tavasolee A, Aliasgharzad N, Salehijouzani G, et al. Interactive effects of Arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant[J]. African Journal of Biotechnology, 2011,10(39):7585-7591. | 
| [33] | 王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019,28(08):139-149. | 
| [34] | Da Silva J S, De Carvalho T S, Dos santos J V, et al. Formononetin stimulates mycorrhizal fungi colonization on the surface of active root nodules in soybean[J]. Symbiosis, 2017,71(1):27-34. doi: 10.1007/s13199-016-0408-9 URL | 
| [35] | Xu L, Teng Y, Li Z G, et al. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum[J]. Science of the total environment, 2010,408(5):1007-1013. doi: 10.1016/j.scitotenv.2009.11.031 URL | 
| [36] | Ren C G, Kong C C, Bian B, et al. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium[J]. International journal of phytoremediation, 2017,19(9):789-797. doi: 10.1080/15226514.2017.1284755 URL pmid: 28165756 | 
| [37] | Ren C G, Kong C C, Wang S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium[J]. Chemosphere, 2019,217:773-779. doi: 10.1016/j.chemosphere.2018.11.085 URL pmid: 30448757 | 
| [38] | Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas[J]. Current microbiology, 2008,56(1):73-79. doi: 10.1007/s00284-007-9042-3 URL | 
| [39] | Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource technology, 2006,97(2):204-210. doi: 10.1016/j.biortech.2005.02.021 URL pmid: 16171676 | 
| [40] | Fitriatin B N, Haris Z A, Nuraniya N, et al. Effect of Azolla Compost and Biofertiliser on Phosphate Solubilising Bacteria, Available-P and Dry Weight of Rice Cultivated in Saline Soil[J]. Malaysian Journal of Soil Science, 2019,23:167-172. | 
| [41] | Do Carmo T S, Moreira F S, Cabral B V, et al. Phosphorus Recovery from Phosphate Rocks Using Phosphate-Solubilizing Bacteria[J]. Geomicrobiology Journal, 2019,36(3):195-203. doi: 10.1080/01490451.2018.1534901 URL | 
| [42] | Santana C, Piccirillo C, Pereira S, et al. Employment of phosphate solubilising bacteria on fish scales-Turning food waste into an available phosphorus source[J]. Journal of Environmental Chemical Engineering, 2019,7(5):103-110. | 
| [43] | Saxena J, Jha A. Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants[J]. CLEAN-Soil, Air, Water, 2014,42(9):1248-1252. doi: 10.1002/clen.v42.9 URL | 
| [44] | Deveau A, Palin B, Delaruelle C, et al. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N[J]. New Phytologist, 2007,175(4):743-755. doi: 10.1111/nph.2007.175.issue-4 URL | 
| [45] | Visen A, Bohra M, Singh P, et al. Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake[J]. Rhizosphere, 2017,3:196-202. doi: 10.1016/j.rhisph.2017.04.006 URL | 
| [46] | Zhang L, Fan J, Ding X, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014,74:177-183. doi: 10.1016/j.soilbio.2014.03.004 URL | 
| [47] | Toljander J F, Artursson V, Paul L R, et al. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species[J]. FEMS Microbiology Letters, 2006,254(1):34-40. doi: 10.1111/j.1574-6968.2005.00003.x URL pmid: 16451176 | 
| [48] | Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiology Ecology, 2007,61(2):295-304. doi: 10.1111/j.1574-6941.2007.00337.x URL pmid: 17535297 | 
| [49] | Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. The ISME journal, 2018,12(10):2339-2351. doi: 10.1038/s41396-018-0171-4 URL pmid: 29899507 | 
| [50] | 李腾腾, 傅智峰, 李侠. 低磷土壤接种菌根真菌和解磷细菌对大田玉米生长和磷吸收的影响[J]. 土壤通报, 2017,48(4):922-929. | 
| [51] | Kucey R, Paul E. Carbon flow, photosynjournal, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.)[J]. Soil biology and biochemistry, 1982,14(4):407-412. doi: 10.1016/0038-0717(82)90013-X URL | 
| [52] | Yasmeen S, Bano A. Combined effect of phosphate-solubilizing microorganisms, Rhizobium and Enterobacter on root nodulation and physiology of soybean (Glycine max L.)[J]. Communications in soil science and plant analysis, 2014,45(18):2373-2384. doi: 10.1080/00103624.2014.939192 URL | 
| [53] | Matias S R, Pagano M C, Muzzi F C, et al. Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil[J]. European Journal of Soil Biology, 2009,45(3):259-266. doi: 10.1016/j.ejsobi.2009.02.003 URL | 
| [1] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. | 
| [2] | 任学祥, 景茂峰, 苏贤岩, 迟雨, 陈浩梁, 钟永志, 叶正和. 根瘤菌对草地贪夜蛾的趋避作用[J]. 中国农学通报, 2022, 38(19): 128-132. | 
| [3] | 陈莹, 吴繁琦, 耿业业, 白钰, 王桂荣, 杨慧婕, 孙志蓉. 基于文献计量学的根瘤固氮对豆科植物影响研究可视化分析[J]. 中国农学通报, 2022, 38(18): 35-43. | 
| [4] | 赵天鑫, 俄胜哲, 袁金华, 王钰轩, 姚佳璇. 土壤中钙与有机碳之间相互作用的研究进展与展望[J]. 中国农学通报, 2022, 38(14): 77-81. | 
| [5] | 陈芳玲, 樊娅萍, 贺苗苗, 王倡宪. 丛枝菌根真菌在药用植物上的应用研究进展[J]. 中国农学通报, 2022, 38(12): 55-60. | 
| [6] | 吴曼, 孟翠萍, 梁海燕, 杨丽玉, 吴琪, 慈敦伟, 郑永美, 李新国. 国内外根瘤菌研究的文献计量学分析[J]. 中国农学通报, 2022, 38(1): 155-164. | 
| [7] | 吴文彦, 程智超, 李梦莎, 隋心, 曾宪楠. 基于Web of Science的根瘤菌发展研究[J]. 中国农学通报, 2021, 37(9): 109-117. | 
| [8] | 宋小双, 遇文婧, 周琦, 闵凯, 邓勋. 樟子松根际土壤解磷细菌的筛选、鉴定及解磷能力[J]. 中国农学通报, 2020, 36(32): 76-81. | 
| [9] | 姚延轩, 接伟光, 杜燕, 赵冬梅, 阎秀峰. 根瘤菌的分类、鉴定及应用技术研究现状[J]. 中国农学通报, 2020, 36(15): 100-105. | 
| [10] | 高芬, 闫欢, 王梦亮, 秦雪梅. 土壤微生物菌群变化对土传病害的影响及生物调控[J]. 中国农学通报, 2020, 36(13): 160-164. | 
| [11] | 郝剑霞,王俊红,王梦亮,刘 雷,王星琳. 2种外源物质对大豆农艺性状及根际微生物群落的影响[J]. 中国农学通报, 2019, 35(34): 27-33. | 
| [12] | 张 童,隋 心,宋福强. 基于Web of Science研究丛枝菌根真菌(AMF)态势分析[J]. 中国农学通报, 2019, 35(12): 144-150. | 
| [13] | 苏华英,张汉马,南文斌. RBR 在植物生长发育中的作用研究进展[J]. 中国农学通报, 2018, 34(17): 39-46. | 
| [14] | 胡丽燕,李 馨,戴传超. 广谱植物内生真菌枫香拟茎点霉生态功能的研究进展[J]. 中国农学通报, 2017, 33(9): 48-57. | 
| [15] | 曾 斌,关鹏,夏江宏,刘梦雯,王 波. 新疆野扁桃自交不亲和SFB与S-RNase蛋白间相互作用的研究[J]. 中国农学通报, 2017, 33(14): 33-38. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||