中国农学通报 ›› 2022, Vol. 38 ›› Issue (17): 51-61.doi: 10.11924/j.issn.1000-6850.cabs-2021-0656
所属专题: 生物技术
陈思琪1,2(), 孙敬爽1, 麻文俊3, 王军辉3, 赵曦阳2, 胡瑞阳1(
)
收稿日期:
2021-07-01
修回日期:
2021-09-13
出版日期:
2022-06-15
发布日期:
2022-07-08
通讯作者:
胡瑞阳
作者简介:
陈思琪,女,1997年出生,河南信阳人,在读硕士,研究方向:林木遗传育种。通信地址:102300 中国林业科学研究院华北林业实验中心,北京九龙山暖温带森林国家长期科研基地,楸树国家创新联盟,E-mail: 基金资助:
CHEN Siqi1,2(), SUN Jingshuang1, MA Wenjun3, WANG Junhui3, ZHAO Xiyang2, HU Ruiyang1(
)
Received:
2021-07-01
Revised:
2021-09-13
Online:
2022-06-15
Published:
2022-07-08
Contact:
HU Ruiyang
摘要:
低温是影响植物生长发育和植被分布的一种非生物胁迫。当环境温度持续低于植物生长的最佳温度时即形成低温胁迫,包括冷害和冻害。冷害是指零度及以上低温对植物造成的伤害,细胞内不结冰,但会使喜温类植物产生生理性障碍,引起该类植物受伤或死亡。冻害是指零度以下低温对细胞造成损伤甚至死亡的现象。植物从感知低温到功能基因表达,进而抵御低温胁迫,相关调控机制一直是研究热点。本文综述了近年来植物低温胁迫相关研究,从信号感知、信号传导、功能基因表达、低温诱导的生理和细胞调机制等几个方面进行了分析讨论,并对植物抗寒研究做出展望,这将有助于抗寒植物新种质的培育。
中图分类号:
陈思琪, 孙敬爽, 麻文俊, 王军辉, 赵曦阳, 胡瑞阳. 植物低温胁迫调控机制研究进展[J]. 中国农学通报, 2022, 38(17): 51-61.
CHEN Siqi, SUN Jingshuang, MA Wenjun, WANG Junhui, ZHAO Xiyang, HU Ruiyang. Regulation Mechanism of Low Temperature Stress on Plants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 51-61.
基因名称 | 植物名称 |
---|---|
CBF | 辣椒(Capsicum chinense),拟南芥(Arabidopsis thaliana),番茄(Solanum lycopersicum),水稻(Oryza sativa),茄子(Solanum melongena),马铃薯(Solanum tuberosum),香蕉(Musa nana Lour.),苹果(Malus pumila mill.),大豆(Glycine max Merr.),茶树(Camellia japonica),桃(Amygdalus persica L.),小麦(Triticum aestivum L.),玉米(Zea mays L.),梨(Pyrus pyrifolia),大花红景天(Rhodiola crenulate),桉树(Eucalyptus robusta Smith),月季(Rosa chinensis Jacq.),生菜(Lactuca sativa L.),油菜(Brassica napus L.), 大麦(Hordeum vulgare L.)水曲柳(Fraxinus mandshurica Rupr.),桦树(Betula platyphylla Suk.),结缕草(Zoysia japonica Steud), 小麦(Triticum aestivum L.),番木瓜(Carica papaya L.),苜蓿(Medicago Sativa Linn),核桃(Juglans regia L.),石榴(Punica granatum L.),筇竹(Qiongzhuea tumidinoda.),香樟(Cinnamomum camphora),慈竹(Neosinocalamus affinis),麻风树(Jatropha curcas L.) 扁桃(Amygdalus communis L.),棉花(Gossypium spp), 辣椒(Capsicum annuum L.),黄瓜(Cucumis sativus L.), 山葡萄(Vitis amurensis Rupr.) |
COR | 甘蓝型油菜(Brassica napus L.),水曲柳(Fraxinus mandshurica Rupr.),番茄(Solanum lycopersicum), 山葡萄(Vitis amurensis Rupr.),山茶(Camellia japonica),拟南芥(Arabidopsis thaliana), 油菜(Brassica napus L.),菠菜(Spinacia oleracea L.),柑橘(Citrus reticulata Blanco),水稻(Oryza sativa L.), 小麦(Triticum aestivum L.),罂粟(Papaver somniferum L.)陆地棉(Gossypium hirsutum Linn.), 荠菜(Capsella bursa-pastoris)丹参(Salvia miltiorrhiza Bge.),草菇(Volvariella volvacea), 烟草(Nicotiana tabacum L.),播娘蒿(Descurainia sophia L.),小立碗藓(Physcomitrella patens) |
MYB | 大豆(Glycine max),拟南芥(Arabidopsis thaliana),玉米(Zea mays L.),水稻 (Oryza sativa L.) 牵牛花(Pharbitis nil),金鱼草(Antirrhinum majus L.),甘草(Glycyrrhiza uralensis Fisch),葡萄(Vitis vinifera L.), 苹果 (Malus pumila mill.),小麦(Triticum aestivum L.),白桦(Betula platyphylla Suk),杨树(PopulusL.) 燕子花 (Iris laevigata Fisch.),番茄(Solanum lycopersicum),澳洲坚果(Macadamia ternifolia), 地钱(Marchantia polymorpha L.),甘薯(Dioscorea esculenta),桂花(Osmanthus fragrans),桑树(Morus alba L.) 玫瑰(Rosa rugosa Thunb.),油菜(Brassica napus L.),西瓜(Citrullus lanatus),菊花(Dendranthema morifolium) 苦荞(Fagopyrum esculentum Moench.),马铃薯(Solanum tuberosum L.),柑橘(Citrus reticulata Blanco), 茶花(Camellia japonica),银杏(Ginkgo biloba L.)烟草(Nicotiana tabacum L.),梅花(Armeniaca mume Sieb.) |
基因名称 | 植物名称 |
---|---|
CBF | 辣椒(Capsicum chinense),拟南芥(Arabidopsis thaliana),番茄(Solanum lycopersicum),水稻(Oryza sativa),茄子(Solanum melongena),马铃薯(Solanum tuberosum),香蕉(Musa nana Lour.),苹果(Malus pumila mill.),大豆(Glycine max Merr.),茶树(Camellia japonica),桃(Amygdalus persica L.),小麦(Triticum aestivum L.),玉米(Zea mays L.),梨(Pyrus pyrifolia),大花红景天(Rhodiola crenulate),桉树(Eucalyptus robusta Smith),月季(Rosa chinensis Jacq.),生菜(Lactuca sativa L.),油菜(Brassica napus L.), 大麦(Hordeum vulgare L.)水曲柳(Fraxinus mandshurica Rupr.),桦树(Betula platyphylla Suk.),结缕草(Zoysia japonica Steud), 小麦(Triticum aestivum L.),番木瓜(Carica papaya L.),苜蓿(Medicago Sativa Linn),核桃(Juglans regia L.),石榴(Punica granatum L.),筇竹(Qiongzhuea tumidinoda.),香樟(Cinnamomum camphora),慈竹(Neosinocalamus affinis),麻风树(Jatropha curcas L.) 扁桃(Amygdalus communis L.),棉花(Gossypium spp), 辣椒(Capsicum annuum L.),黄瓜(Cucumis sativus L.), 山葡萄(Vitis amurensis Rupr.) |
COR | 甘蓝型油菜(Brassica napus L.),水曲柳(Fraxinus mandshurica Rupr.),番茄(Solanum lycopersicum), 山葡萄(Vitis amurensis Rupr.),山茶(Camellia japonica),拟南芥(Arabidopsis thaliana), 油菜(Brassica napus L.),菠菜(Spinacia oleracea L.),柑橘(Citrus reticulata Blanco),水稻(Oryza sativa L.), 小麦(Triticum aestivum L.),罂粟(Papaver somniferum L.)陆地棉(Gossypium hirsutum Linn.), 荠菜(Capsella bursa-pastoris)丹参(Salvia miltiorrhiza Bge.),草菇(Volvariella volvacea), 烟草(Nicotiana tabacum L.),播娘蒿(Descurainia sophia L.),小立碗藓(Physcomitrella patens) |
MYB | 大豆(Glycine max),拟南芥(Arabidopsis thaliana),玉米(Zea mays L.),水稻 (Oryza sativa L.) 牵牛花(Pharbitis nil),金鱼草(Antirrhinum majus L.),甘草(Glycyrrhiza uralensis Fisch),葡萄(Vitis vinifera L.), 苹果 (Malus pumila mill.),小麦(Triticum aestivum L.),白桦(Betula platyphylla Suk),杨树(PopulusL.) 燕子花 (Iris laevigata Fisch.),番茄(Solanum lycopersicum),澳洲坚果(Macadamia ternifolia), 地钱(Marchantia polymorpha L.),甘薯(Dioscorea esculenta),桂花(Osmanthus fragrans),桑树(Morus alba L.) 玫瑰(Rosa rugosa Thunb.),油菜(Brassica napus L.),西瓜(Citrullus lanatus),菊花(Dendranthema morifolium) 苦荞(Fagopyrum esculentum Moench.),马铃薯(Solanum tuberosum L.),柑橘(Citrus reticulata Blanco), 茶花(Camellia japonica),银杏(Ginkgo biloba L.)烟草(Nicotiana tabacum L.),梅花(Armeniaca mume Sieb.) |
[1] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6):8-17. |
[2] | 刘奕清. 低温胁迫下两种桉树的生理响应特征及转录表达差异研究[D]. 北京: 中国农业大学, 2015. |
[3] | 王摇宁, 袁美丽, 安瑞云. 低温对樟树抗寒性生理指标的影响[J]. 森林与环境学报, 2020, 40(5):512-518. |
[4] | MIURA K, FURUMOTO T. Cold signaling and cold response in plants[J]. IJMS, 2013, 14(3):5312-5337. |
[5] | 米宝琴, 毛娟, 申鹏, 等. 山葡萄‘通化-3’抗寒相关基因SSH文库的构建及分析[J]. 果树学报, 2015, 32(4):546-554. |
[6] |
LIANG YC, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J]. Journal of plant physiology, 2003, 160(10):1157-1164.
doi: 10.1078/0176-1617-01065 URL |
[7] | 牛茹萱. 甘肃地方桃资源抗寒性评价及其对低温胁迫的响应机制[D]. 兰州: 甘肃农业大学, 2020. |
[8] | 伍宝朵, 范睿, 胡丽松, 等. 低温胁迫对胡椒叶片生理生化及显微结构的影响[J]. 热带作物学报, 2018, 39(8):1519-1525 |
[9] | 钟海霞, 陆婷, 刘立强, 等. 不同低温胁迫下野扁桃与栽培扁桃花原基解剖结构观察[J]. 西北农业学报, 2013, 22(12):112-118. |
[10] | 郑国华, 张贺英, 钟秀容. 低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化[J]. 中国生态农业学报, 2009, 17(4):739-745. |
[11] | 郑国华, 张贺英. 低温胁迫对枇杷幼果细胞超微结构及膜透性和保护酶活性的影响[J]. 热带作物学报, 2008, 29(6):730-737. |
[12] | KRATSCH H A, WISE R R. The ultrastructure of chilling stress[J]. Plant,Cell & Environment, 2000, 23(4):337-350. |
[13] | 马英, 许琪, 谷战英, 等. 低温胁迫对五种景天科多肉植物生理指标的影响[J]. 北方园艺, 2019, 424(1):97-102. |
[14] | 张兆铭, 史星雲, 牟德生, 等. 八个酿酒葡萄品种抗寒性比较[J]. 北方园艺, 2015, 4(7):33-35. |
[15] |
WALLIS J G, WANG H, GUERRA D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Molecular Biology, 1997, 35(3):323-30.
doi: 10.1023/A:1005886210159 URL |
[16] | 马娟. 关中地区常绿阔叶树种资源调查及其抗寒性研究[D]. 咸阳: 西北农林科技大学, 2008. |
[17] |
WANG Y H, XIONG F, NONG S H, et al. Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress[J]. Scientific reports, 2020, 10(1):1-10.
doi: 10.1038/s41598-019-56847-4 URL |
[18] | HARE P D, CRESS W A, STADEN J V. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, cell & environment, 1998, 21(6):535-553. |
[19] | 王小华, 庄南生. 脯氨酸与植物抗寒性的研究进展[J]. 中国农学通报, 2008, 24(11):398-402. |
[20] | 李建设, 耿广东, 程智慧. 低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J]. 西北农林科技大学学报:自然科学版, 2003, 31(1):90-92. |
[21] | XIN Z, BROWSE J. Cold comfort farm: the acclimation of plants to freezing temperatures[J]. Plant, cell & environment, 2000, 23(9):893-902. |
[22] | 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3):177-182. |
[23] |
VELIKOVA V, YORDANOV I, EDREVA A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants[J]. Plant science, 2000, 151(1):59-66.
doi: 10.1016/S0168-9452(99)00197-1 URL |
[24] |
LIU W C, ZHENG C F, CHEN J N, et al. Cold acclimation improves photosynthesis by regulating the ascorbate-glutathione cycle in chloroplasts of Kandelia obovate[J]. Journal of forestry research, 2019, 30(3):755-765.
doi: 10.1007/s11676-018-0791-6 URL |
[25] | 邓仁菊. 火龙果对低温胁迫的生理响应及离体诱变筛选抗寒突变体研究[D]. 雅安: 四川农业大学, 2015. |
[26] | 李刚. 几种木兰科常绿树种幼苗的抗寒性及在冬春季节光合生理生态特征的研究[D]. 南京: 南京农业大学, 2006. |
[27] | 李瑞雪. 抗寒常绿木兰科植物的筛选及抗寒机理研究[D]. 长沙: 中南林业科技大学, 2018. |
[28] |
DAI F, HUANG Y, ZHOU M, et al. The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars[J]. Biologia plantarum, 2009, 53(2):257-262.
doi: 10.1007/s10535-009-0048-5 URL |
[29] | 白静. 低温胁迫下不同抗寒性甘蓝型冬油菜生理响应及DNA甲基化研究[D]. 兰州: 甘肃农业大学, 2019. |
[30] |
AHMAD P, JALEEL C A, SALEM M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress[J]. Critical reviews in biotechnology, 2010, 30(3):161-175.
doi: 10.3109/07388550903524243 URL |
[31] | 蒲媛媛, 孙万仓. 白菜型冬油菜抗寒性与生理生化特性关系[J]. 分子植物育种, 2010, 8(2): 335-339. |
[32] | 姜春宁, 林伟, 黄永芳. 低温胁迫对广东含笑嫁接苗生理生化指标的影响[J]. 福建林业科技, 2016, 43(2):123-128. |
[33] |
HE F, LI H G, WANG J J, et al. Pe STZ 1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2[J]. Plant biotechnology journal, 2019, 17(11):2169-2183.
doi: 10.1111/pbi.13130 URL |
[34] | KUMAR D, HAZRA S, DATTA R, et al. Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress[J]. Scientific reports, 2016, 6(1):237-251. |
[35] | 王萍, 李彦慧, 张雪梅, 等. 低温对仁用杏雌蕊抗坏血酸—谷胱甘肽循环的影响[J]. 园艺学报, 2013, 40(3):417-425. |
[36] | 高俊杰, 秦爱国, 于贤昌. 低温胁迫对嫁接黄瓜叶片抗坏血酸—谷胱甘肽循环的影响[J]. 园艺学报, 2009, 36(2):215-220. |
[37] | FAN Y H, TIAN Z W, YAN Y Y, et al. Winter Night-Warming Improves Post-anthesis Physiological Activities and Sink Strength in Relation to Grain Filling in Winter Wheat (Triticum aestivum L.)[J]. Frontiers in plant science, 2017, 8(13):1-14. |
[38] | SAKUYA N, MASANORI I. Regulation of Chlorophagy during Photoinhibition and Senescence: Lessons from Mitophagy[J]. Plant & Cell Physiology, 2018, 59(6):1135-1143. |
[39] |
DIEGO O, HU J, SALAS F. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions[J]. Journal of experimental botany, 2017, 68(16):4545-4557.
doi: 10.1093/jxb/erx276 URL |
[40] | 杨华庚, 林位夫. 低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响[J]. 中国农学通报, 2009, 25(24):506-509. |
[41] | FU J J, GATES R N, XU YF, et al. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb[J]. Journal of Photochemistry & Photobiology, B: Biology, 2016, 163:30-39. |
[42] | 陈明辉, 程世平, 张志录, 等. 低温胁迫下不同果蔗品种光合及荧光特性的变化及耐寒性评价[J]. 热带作物学报, 2018, 39(3):465-471. |
[43] |
TERASHIMA I, NOGUCHI K, NEMOTO TI, et al. The cause of PSI photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant[J]. Physiologia plantarum, 1998, 103(3):295-303.
doi: 10.1034/j.1399-3054.1998.1030301.x URL |
[44] | 王摇宁, 袁美丽, 安瑞云. 低温对樟树抗寒性生理指标的影响[J]. 森林与环境学报, 2020, 40(5):512-518. |
[45] |
JIANG M Y, ZHANG J H. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings[J]. Planta, 2002, 215(6):1022-1030.
doi: 10.1007/s00425-002-0829-y URL |
[46] |
EREMINA M, WILFRIED R, BRIGITTE P. Hormonal control of cold stress responses in plants[J]. Cellular and Molecular Life Sciences: CMLS, 2016, 73(4):797-810.
doi: 10.1007/s00018-015-2089-6 URL |
[47] |
YANG Y, YAO N, JIA Z K, et al. Effect of exogenous abscisic acid on cold acclimation in two Magnolia species[J]. Biologia plantarum, 2016, 60(3) :555-562.
doi: 10.1007/s10535-016-0623-5 URL |
[48] |
CHEN I C, LEE S C, PAN S M, et al. GASA4,a GA-stimulated gene, participates in light signaling in Arabidopsis[J]. Plant science, 2007, 172(6):1062-1071.
doi: 10.1016/j.plantsci.2007.03.012 URL |
[49] |
YANG G X, SHEN S H, YANG S H, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin[J]. Plant physiology and biochemistry, 2003, 41(4):369-374.
doi: 10.1016/S0981-9428(03)00032-9 URL |
[50] |
NIU S H, GAO Q, LI Z X, et al. The Role of Gibberellin in the CBF1-Mediated Stress-Response Pathway[J]. Plant molecular biology reporter, 2014, 32(4):852-863.
doi: 10.1007/s11105-013-0693-x URL |
[51] | 郁平慧. 早籼稻低温伤害机理及调控措施研究[D]. 北京: 中国农业科学院, 2020. |
[52] |
KLESSIG D F, WOO C H, AMICK D D M. Systemic Acquired Resistance and Salicylic Acid: Past, Present and Future[J]. Molecular plant-microbe interactions, 2018, 31(9): 871-888.
doi: 10.1094/MPMI-03-18-0067-CR URL |
[53] | WANG W L, WANG X, ZHANG J, et al. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat[J]. Plant Growth Regulation: An International Journal on Plant Growth and Development, 2020, 90(1):109-121. |
[54] | HU Y R, JIANG Y J, HAN X, et al. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones[J]. Narnia, 2017, 68(6):1361-1369. |
[55] |
CAMPOS C N, ÁVILA R G, de Souza K R D, et al. Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L.plants[J]. Agricultural water management, 2019, 211(45):37-47.
doi: 10.1016/j.agwat.2018.09.025 URL |
[56] | 李辉. 蛋白激酶MPK3/MPK6调控拟南芥响应低温胁迫的分子机制[D]. 北京: 中国农业大学, 2017. |
[57] |
ENSMINGER I, BUSCH F, HUNER N P A. Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2006, 126(1):28-44.
doi: 10.1111/j.1399-3054.2006.00627.x URL |
[58] |
Mastrangelo A M, Belloni S, Barilli S, et al. Low temperature promotes intron retention in two e-cor genes of durum wheat[J]. Planta, 2005, 221(5):705-715.
pmid: 15666155 |
[59] |
ZHAO Y, ANTONIOU-KOUROUNIOTI R L, GRANT G, et al. Publisher Correction: Temperature-dependent growth contributes to long-term cold sensing[J]. Nature, 2020, 583(7):825-829.
doi: 10.1038/s41586-020-2485-4 URL |
[60] | 黄玉婷, 钱文俊, 王博, 等. 外源Ca-(2+)及钙离子信号抑制剂对茶树抗寒性的影响[J]. 茶叶科学, 2015, 35(6):520-526. |
[61] | RANTY B, ALDON D, COTELLE V, et al. Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses[J]. Front plant science, 2016, 7(25):1-7. |
[62] | PAREEK A, KHURANA A, SHARMA A K, et al. An Overview Of Signaling Regulons During Cold Stress Tolerance in Plants[J]. Current genomics, 2017, 18(999):498-511. |
[63] |
YU L, XU C J, ZHU Y F, et al. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]. Journal of Integrative Plant Biology, 2018, 60(2): 173-188.
doi: 10.1111/jipb.12614 URL |
[64] |
ABBASI F, HARUKO O, TOKI S, et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant molecular biology, 2004, 55(4): 541-552.
doi: 10.1007/s11103-004-1178-y URL |
[65] | 成京晋, 李浩, 早浩龙, 等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种, 2021, 19(9):1-20. |
[66] |
KIDOKORO S, YONEDA K, TAKASAKI H, et al. Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature[J]. The plant cell, 2017, 29(4):760-774.
doi: 10.1105/tpc.16.00669 URL |
[67] | STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 Encodes an AP2 Domain-Containing Transcriptional Activator that Binds to the C-Repeat/DRE, a Cis-Acting DNA Regulatory Element that Stimulates Transcription in Response to Low Temperature and Water Deficit[J]. Proceedings of the national academy of sciences of the United States of America, 1997, 94(3):1035-1040. |
[68] |
CHINNUSAMY V, ZHU J H, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in plant science, 2007, 12(10): 444-451.
doi: 10.1016/j.tplants.2007.07.002 URL |
[69] | SHI Y T, DING Y L, YANG S H. Cold Signal Transduction and its Interplay with Phytohormones During Cold Acclimation[J]. Plant & cell Physiology, 2015, 56(1):7-15. |
[70] |
DING Y L, SHI Y T, YANG S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. The new phytologist, 2019, 222(4) :1690-1704.
doi: 10.1111/nph.15696 URL |
[71] | DING Y L, JIA Y X, SHI Y T, et al. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses[J]. The EMBO Journal, 2018, 37(8): e98228. |
[72] |
HU Y R, JIANG L Q, WANG F, et al. Jasmonate Regulates the Inducer of CBF EXPRESSION—C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis[J]. The plant cell, 2013, 25(8):2907-2924.
doi: 10.1105/tpc.113.112631 URL |
[73] |
Morrison DK. MAP kinase pathways.[J]. Cold Spring Harb Perspect Biol, 2012, 4(11): a11254.
doi: 10.1101/cshperspect.a011254 URL |
[74] |
LI H, DING Y L, SHI Y T, et al. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis[J]. Developmental Cell, 2017, 43(5):630-642.
doi: 10.1016/j.devcel.2017.09.025 URL |
[75] |
ZHAO C Z, WANG P C, TONG S, et al. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability[J]. Developmental cell, 2017, 43(5):618-629.
doi: 10.1016/j.devcel.2017.09.024 URL |
[76] | XIA C X, Gong Y S, Chong K, et al. Phosphatase OsPP2C27 directly dephosphorylates OsMAPK3 and OsbHLH002 to negatively regulate cold tolerance in rice[J]. Plant, cell & environment, 2020, 44(2):491-505. |
[77] |
TANG K, Zhao L, Ren Y Y, et al. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes[J]. Journal of integrative plant biology, 2020, 62(3):258-263.
doi: 10.1111/jipb.12918 URL |
[78] |
WANG D Z, JIN Y N, DING X H, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants[J]. Biochemistry (Mosc), 2017, 82(10):1103-1117.
doi: 10.1134/S0006297917100030 URL |
[79] |
LI W, CHEN Y, YE M H, et al. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum[J]. BMC evolutionary biology, 2020, 20(1):1-14.
doi: 10.1186/s12862-019-1549-2 URL |
[80] |
WANG P J, CHEN X J, GUO Y C, et al. Identification of CBF Transcription Factors in Tea Plants and a Survey of Potential CBF Target Genes under Low Temperature[J]. International journal of molecular sciences, 2019, 20(20):1-16.
doi: 10.3390/ijms20010001 URL |
[81] |
ZHU T T, WU S W, ZHANG D F, et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene[J]. TAG. theoretical and applied genetics. theoretische und angewandte genetik, 2019, 132(7):2137-2154.
doi: 10.1007/s00122-019-03343-y URL |
[82] |
Liu Q. Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis[J]. The Plant Cell, 1998, 10(8):1391-1406.
doi: 10.1105/tpc.10.8.1391 URL |
[83] |
JAGLO-OTTOSEN K R, GILMOUR S J, ZARKA D G, et al. Arabidopsis CBF 1 overexpression induces COR genes and enhances freezing tolerance[J]. Science (New York, N.Y.), 1998, 280(5360):104-106.
doi: 10.1126/science.280.5360.104 URL |
[84] | DONG X J, YAN Y, JIANG B C, et al. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures[J]. The embo journal, 2020, 39(13):1-18. |
[85] |
JIANG B C, SHI Y T, PENG Y, et al. Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis[J]. Molecular plant, 2020, 13(6):894-906.
doi: 10.1016/j.molp.2020.04.006 URL |
[86] |
YANG Y, HARRIS J, LI Y, et al. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield[J]. Plant biotechnology journal, 2020, 18(3):829-844.
doi: 10.1111/pbi.13252 URL |
[87] |
AGARWAL M, HAO Y J, AVNISH K, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. The journal of biological chemistry, 2006, 281(49):37636-37645.
doi: 10.1074/jbc.M605895200 URL |
[88] |
Wang X, Ding YL, Li ZY, et al. PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15[J]. Developmental Cell, 2019, 51(2):222-235.
doi: S1534-5807(19)30691-4 pmid: 31543444 |
[89] |
ZHANG S T, ZHU C, LYU Y, et al. Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus longan Lour[J]. BMC genomics, 2020, 21(1):1-20.
doi: 10.1186/s12864-019-6419-1 URL |
[90] | MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochimica et biophysica acta, 2012, 1819(2)86-96. |
[91] |
GILMOUR J S. OVEREXPRESSION of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation[J]. PLANT PHYSIOLOGY, 2000, 124(4):1854-1865.
doi: 10.1104/pp.124.4.1854 URL |
[92] |
ZARKA D G, VOGEL J T, Thomashow C M F. Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature[J]. PLANT PHYSIOLOGY, 2003, 133(2):910-918.
doi: 10.1104/pp.103.027169 URL |
[93] | SIDDIQUA M, NASSUTH A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression[J]. Plant, cell & environment, 2011, 34(8):1345-1359. |
[94] |
JIA Y X, DING Y L, SHI Y T, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New phytologist, 2016, 212(2):345-353.
doi: 10.1111/nph.14088 URL |
[95] | 董洪霞, 沈镝, 李锡香, 等. 黄瓜耐冷相关基因的表达分析[J]. 分子植物育种, 2017, 15(9):3446-3453. |
[96] | MEHTAP, SAHIN-CEVIKGLORIA A, Moore. Cold-induced dehydrins from Poncirus trifoliata localized in the nucleus[J]. Journal of plant biochemistry & biotechnology, 2012, 21(1):134-139. |
[97] | PARK J, LIM C J, SHEN M, et al. Epigenetic switch from repressive to permissive chromatin in response to cold stress[J]. Proceedings of the national academy of sciences of the united states of america, 2018, 115(23):E5400-E5409. |
[98] |
PARK S, LEE C M, DOHERTY COLLEEN J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network[J]. The plant journal, 2015, 82(2):193-207.
doi: 10.1111/tpj.12796 URL |
[99] |
SHINGOTE P R, KAWAR P G, PAGARIYA M C, et al. Ectopic Expression of SsMYB18, a Novel MYB Transcription Factor from Saccharum spontaneum Augments Salt and Cold Tolerance in Tobacco[J]. Sugar tech, 2017, 19(3):270-282.
doi: 10.1007/s12355-016-0466-6 URL |
[100] | LIN G, YANG H B, ZHANG X Y, et al. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis[J]. Journal of experimental botany, 2013,(6):1755-1767. |
[101] |
Gil L H, JOON S P. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis[J]. The Plant Journal : for cell and molecular biology, 2015, 82(6) :962-977.
doi: 10.1111/tpj.12866 URL |
[102] | 雍玉冰. 低温胁迫应答转录因子在百合逆境响应中的功能及调控机制研究[D]. 北京: 北京林业大学, 2020. |
[103] |
DOU T X, HU C H, SUN X X, et al. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana[J]. Plant cell, tissue and organ culture (PCTOC), 2016, 125(1):93-106.
doi: 10.1007/s11240-015-0932-y URL |
[104] |
SU C F, WANG Y C, HSIEH T H, et al. A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice1[J]. Plant physiology, 2010, 153(1):145-158.
doi: 10.1104/pp.110.153015 URL |
[105] |
RUSHTON D L, TRIPATHI P, RABARA R C, et al. WRKY transcription factors: key components in abscisic acid signalling[J]. Plant biotechnology journal, 2011, 10(1):2-11.
doi: 10.1111/j.1467-7652.2011.00634.x URL |
[106] |
JOHNSON C S, BEN K, SMYTH D R. TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor[J]. The plant cell, 2002, 14(6):1359-1375.
doi: 10.1105/tpc.001404 URL |
[107] |
MIAO Y, LAUN T, ZIMMERMANN P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J]. Plant molecular biology, 2004, 55(6):853-867.
doi: 10.1007/s11103-005-2142-1 URL |
[108] |
XIU H, NURUZZAMAN M, Guo X, et al. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones.[J]. International journal of molecular sciences, 2016, 17(3):1-14.
doi: 10.3390/ijms17010001 URL |
[109] |
LI Z, WANG N N, GONG S Y, et al. Overexpression of a cotton ( Gossypium hirsutum ) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant physiology and biochemistry, 2015, 96(11):311-320.
doi: 10.1016/j.plaphy.2015.08.016 URL |
[110] |
SUN Y Z, NIU Y Y, XU J, et al. Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius[J]. Plant cell, tissue and organ culture (PCTOC), 2013, 114(2):269-277.
doi: 10.1007/s11240-013-0323-1 URL |
[111] |
CHEN W, DENG P Y, CHEN L L, et al. A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco[J]. Plos one, 2013, 8(6):e65120.
doi: 10.1371/journal.pone.0065120 URL |
[112] | 李季生, 李娜, 贾漫丽, 等. 基于转录组数据挖掘桑树bHLH转录因子家族[J]. 分子植物育种, 2020, 20(6):1798-1810. |
[113] |
WANG Y J, ZHANG Z G, HE X J, et al. A rice transcription factor OsbHLH1 is involved in cold stress response[J]. Theoretical and applied genetics, 2003, 107(8):1402-1409.
doi: 10.1007/s00122-003-1378-x URL |
[114] |
YU W, JIANG C J, LI Y Y, et al. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant cell reports, 2012, 31(1):27-34.
doi: 10.1007/s00299-011-1136-5 URL |
[115] |
HUANG X S, ZHANG Q H, ZHU D X, et al. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase[J]. Journal of experimental botany, 2015, 66(11):3259-3274.
doi: 10.1093/jxb/erv138 URL |
[116] |
ZHU J H, DONG C H, ZHU J K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J]. Current opinion in plant biology, 2007, 10(3):290-295.
doi: 10.1016/j.pbi.2007.04.010 URL |
[117] |
AN J P, WANG X F, ZHANG X W, et al. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation[J]. Plant biotechnology journal, 2020, 18(2):337-353.
doi: 10.1111/pbi.13201 URL |
[118] |
GUO X Y, XU S J, CHONG K. Cold Signal Shuttles from Membrane to Nucleus[J]. Molecular Cell, 2017, 66(1):7-8.
doi: 10.1016/j.molcel.2017.03.010 URL |
[119] |
MIURA K, OHTA M, NAKAZAWA M, et al. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance[J]. The Plant Journal : for cell and molecular biology, 2011, 67(2):269-279.
doi: 10.1111/j.1365-313X.2011.04589.x URL |
[120] |
MAYER B F, ALI-BENALI M A, DEMONE J, et al. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities[J]. Physiologia plantarum, 2015, 155(3):281-295.
doi: 10.1111/ppl.12318 URL |
[121] | GARG R, Chevala V N, Shankar R, et al. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response[J]. Scientific reports, 2015, 5(1):791-802. |
[122] | CI D, SONG Y P, TIAN M, et al. Methylation of miRNA genes in the response to temperature stress in Populus simonii[J]. Frontiers in plant science, 2015, 921(6):1-11. |
[123] |
HOFMEISTER B T, LEE K, ROHR N A, et al. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation[J]. Genome biology, 2017, 18(1):1-16.
doi: 10.1186/s13059-016-1139-1 URL |
[1] | 余兰, 王浩然, 张莹, 邢红运, 丁琪, 赵宝珍, 崔娜. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 87-93. |
[2] | 杨晓旭, 李梦娣, 刘大军, 冯国军, 刘畅. 外源褪黑素对低温胁迫下菜豆种子萌发及抗性的影响[J]. 中国农学通报, 2022, 38(33): 34-38. |
[3] | 李建平, 刘玉汐, 高岩, 任景全, 孙月, 郭春明, 王靖. 灌浆初期低温对春玉米产量构成的影响研究[J]. 中国农学通报, 2022, 38(12): 7-12. |
[4] | 杨艺炜, 王家哲, 任平, 刘晨, 李明明, 李英梅. 低温胁迫对早春茬番茄生长和产量的影响[J]. 中国农学通报, 2022, 38(10): 32-37. |
[5] | 赵晶晶, 周浓, 郑殿峰. 低温胁迫对大豆花期叶片蔗糖代谢及产量的影响[J]. 中国农学通报, 2021, 37(9): 1-8. |
[6] | 娄慧, 赵曾强, 朱金成, 张薇. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报, 2021, 37(35): 13-19. |
[7] | 刘畅, 李佳荫, 冯国军, 刘大军, 杨晓旭. 亚精胺在缓解菜豆幼苗低温胁迫中的作用[J]. 中国农学通报, 2021, 37(32): 66-72. |
[8] | 佟斌, 李虹, 孙波. 杂交蓝莓‘兴安1号’抗寒能力分析[J]. 中国农学通报, 2021, 37(28): 57-61. |
[9] | 李林, 杜卓, 侯雯, 张凯, 黄浩, 路运才. 外源谷胱甘肽对低温胁迫下玉米幼苗的影响[J]. 中国农学通报, 2021, 37(27): 16-20. |
[10] | 马悦, 于冰. nsLTPs基因参与植物逆境胁迫应答的研究进展[J]. 中国农学通报, 2021, 37(18): 95-101. |
[11] | 李颖, 王莹莹, 苏旭, 谷建田. 番茄MYB44基因生物信息学及亚细胞定位分析[J]. 中国农学通报, 2021, 37(14): 34-40. |
[12] | 巫桂芬, 龙明华, 乔双雨. 蔬菜体内多环芳烃(PAHs)的调控机制研究[J]. 中国农学通报, 2021, 37(13): 42-48. |
[13] | 王钰, 许学, 秦瑞英, 陆徐忠, 李莉, 杨剑波, 倪金龙, 马卉, 汪秀峰. 一种基于PCR的水稻SNP标记检测方法[J]. 中国农学通报, 2020, 36(9): 82-93. |
[14] | 任勃, 王翰盈, 付婷钰, 文祝友, 熊海蓉, 张先文. 抗寒剂的叶喷施用方法及其对水稻秧苗抗寒性的影响[J]. 中国农学通报, 2020, 36(33): 1-6. |
[15] | 付婷钰, 熊海蓉, 文祝友, 史万杰, 熊远福. 植物抗寒剂研究进展[J]. 中国农学通报, 2020, 36(23): 31-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||