[1] 张锡州,李廷轩,王昌金.富钾植物籽粒览研究进展[J].中国农学通报,2005,21(4):230-235. [2] A.V. Zheleznov, L.P.Solonenko, N.B.Zheleznova. Seed proteins of the wild and the cultivated Amaranthus species[J]. Euphytica, 1997, 97(2): 177-182. [3] Raina A, Datta A. Molecular cloning of a gene encoding a seed-specific protein withnutritionally balanced amino acid composition from Amaranthus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(24): 11774-11778. [4] Bello-Pérez L A, Paredes-López O. Starches of some food crops, changes during processing and their nutraceutical potential[J]. food engineering reviews,2009, 1(1): 50-65. [5] implinger D M, Dobos G, Schoenlechner R, et al. Yield and quality of grain amaranth (Amaranthus spp.) in Eastern Austria[J]. plant soil and environment, 2007, 53(3): 105-112. [6] Venskutonis P R, Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses[J]. Comprehensive Reviews in Food Science and Food Safety. 2013, 12(4): 381-412. [7] Punia D, Yadav S K, Gupta M, et ai. Nutrient composition of amaranth (Amaranthus tricolor) and kondhara (Digeria arvensis) leaves and their products[J]. Journal of Food Science and Technology-mysore, 2004, 41: 563-566. [8] Sanz-Penella J M, Wronkowska M, Soral-Smietana M, et al. Effect of whole amaranth flour on bread properties and nutritive value[J]. LWT-FOOD SCIENCE AND TECHNOLOGY, 2013, 50(2): 679-685. [9] Martirosyan D M, Miroshnichenko L A, Kulakova S N, et al. Amaranth oil application for coronary heart disease and hypertension[J]. Lipids in health and disease, 2007,6(1): 1-12. [10] 李时珍.本草纲目.人民卫生出版社,1982. [11] 董文彦,张东平,王泽远,等.籽粒苋延缓衰老作用的研究[J].中国粮油学报,1999,14(6):41-45. [12] He H P, Cai Y Z, Sun M, et al. Extraction and purification of squalene fromAmaranthusgrain[J]. Journal of agricultural and food chemistry. 2002, 50(2): 368-372. [13] Huang Z R, Lin Y K, Fang J Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology[J]. Molecules, 2009 ,14(1): 540-554. [14] 赵秀玲.苋菜的营养成分与保健功能[J].食品工业科技,2010,31(8):391-393. [15] 王艳荣,王鸿升,张海棠,等.优质饲用植物—籽粒苋的研究进展[J].北方牧业,2011,(3):31-32. [16] 杨健,赵映生,王国志.籽粒苋品种推广及其开发利用[J].种子科技,2007,25(1):46-48. [17] A Raina and A Datta. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(24):11774-11778. [18] Chakraborty S, Chakraborty N, Agrawal L S, et al. Next generation protein rich potato by expressing a seed protein gene AmA1 as a result of proteome rebalancing in transgenic tuber[J]. PNA S,2010,107(41): 17533-17538. [19] Tamas C, Kisgyorgy B N, Rakszigi M, et al. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality[J]. Plant Cell Reports, 2009, 28(7): 1085-1094. [20] Sinagawa-García SR, Rascón-Cruz Q, Valdez-Ortiz A, et al. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin[J]. Journal of agricultural and food chemistry, 2004,52(9): 2709-2714. [21] Park Y J, Nishikawa T, Tomooka N, et al. Molecular cloning and expression analysis of a geneencoding soluble starch synthase I from grain amaranth(Amaranthus cruentus L.). Mol Breeding, 2012,30(2):1065-1075. [22] Park Y J, Nemoto K, Nishikawa T, et al. Molecular cloning and characterization of granule bound starch synthase I cDNA from a grain amaranth (Amaranthus cruentus L.)[J]. Breed Sci, 2009, 59(4):351–360. [23] Park J Y, Nishikawa T, Matsushima K, et al. Molecular characterization and genetic diversity of the starch branching enzyme (SBE) gene from Amaranthus: the evolutionary origin of grain amaranths[J]. Mol Breeding,2014, 34(4): 1975-1985. [24] Young-Jun Park, Kazuhiro Nemoto, Norihiko Tomooka, et al. Molecular characterization and expression analysis of a gene encoding an isoamylase-type starch debranching enzyme 3 (ISA3) in grain amaranths[J].Molecular breeding: new strateges in plant improvement, 2014, 33(4): 793-802. [25] 周永刚,田颖川,莽克强.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究[J].生物工程学报,2001,17(1):34-39. [26] 邓智年,魏源文,吕维莉,李杨瑞.MAR序列介导野苋菜凝集素基因在白菜中的表达[J].园艺学报,2007,34(2):381 -386. [27] Valdés-Rodríguez S, Guerrero-Range A, Melgoza-Villagómez C, et al. Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress[J].Plant Physiology and Biochemistry,2007,45(10-11):790-798. [28] 徐芳秀,江树业, HmadlCokre,孙梅.籽粒苋类II型金属硫蛋白基因的分离及其表达分析农业[J].生物技术学报,2002,10(1):23-24 [29] 徐芳秀,江树业, Harold Corke, 孙梅.籽粒苋(Amaranthus cruentus L.)核糖体蛋白S25基因(cDNA)的克隆及其表达分析[J].农业生物技术学报,2001,9(2):128-130. [30] Délano-Frier J P, Avilés-Arnaut H, Casarrubias-Castillo K, et al. Transcriptomic analysis of grain amaranth(Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. Tuberculatus,expression profiling in stems and in response to biotic and abiotic stress[J]. BMC Genomics, 2011,12(1): 1-18. [31] Macrae R, Robinson R K, Sadler M J. Encyclopaedia of Food Science, Food Technology and Nutrition[M]. London: Academic Press, 1993: 135-140. [32] 秦嘉海.耐盐牧草籽粒苋对河西走廊草甸盐土改土培肥效应[J].土壤通报, 2005,36(5):806-808. [33] 甘露,李小兵,胡乃壁,等.红苋R104叶绿体基因文库的构建及1,5-二磷酸核酮糖羧化/加氧酶大亚基基因的克隆[J].植物学报,1989,31(4):245-252. [34] 冯瑞云,白云凤,李平,等.籽粒苋C4型磷酸烯醇式丙酮酸羧化酶基因的克隆和表达分析[J].作物学报,2011,37(10):1801-1808. [35] 王淼,王旭静,唐巧玲,等.籽粒苋中PPDK基因的克隆及表达特性分析[J].生物技术进展,2011,1(1):50-55. [36] 李平,白云凤,张维锋.籽粒苋苹果酸酶基因克隆及分析[J].西北植物学报,2010,30(2):0229-0236. [37] Long J J, Wang J L, Berry J O. Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria[J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1994, 269(4): 2827-2833. [38] Chen X Q, Zhang X D, Liang R Q, et al. Expression of the intact C4 type PEPC gene cloned from maize in transgenic winter wheat[J]. Chinese Science Bulletin, 2004, 49(20): 2137-2143. [39] XIANG Xun-Chao, HE Li-Bin, SUN Jian-Ming, et al. Effect of Maize PEPC Gene in different genetic backgrounds of CMS maintainers and tolerance to photooxidation in the PEPC transgenic line[J]. Chinese Journal of Rice Science, 2009, 23(3): 257-262 (in Chinese with English abstract). [40] Ku M S B, Agarie S, Nomura M, et al. High-level expres-sion of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nat Biotechnol, 1999, 17(1): 76-81. [41] 聂江婷,白云凤,贺飞燕,等.籽粒苋丙酮酸磷酸二激酶(PPDK)基因密码子偏好性分析[J].植物学报,2014,49(6):672-681. [42] 白云凤,聂江婷,张忠梁,等.籽粒苋AhNAD-ME的序列特征与表达[J].作物学报,2014,40(12):2192-2197. [43] 彰科林,易凤银.富钾绿肥资源筛选及应用研究[J].土壤通报,1992,23(5):229-231. [44] 涂书新,郭智芬,孙锦荷.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究[J].核农学报,1999,13(5):305-311. [45] 沈中泉,郭云桃,刘良学,等.生物钾肥的增产作用及对土壤钾平衡的影响[J].土壤学报,1988,25(1):31-39. [46] 全国农业技术推广服务中心编著.中国有机肥料养分志[M].北京.中国农业出版社.1994 :129-131. [47] 王乐先.富钾绿肥小葵子的筛选及栽培利用[J].土壤通报,1986(2):64-67. [48] 王隽英,曹卫东,郭永兰,等.富钾绿肥籽粒苋的研究[J].中国土壤与肥料,1999,(4):36-39. [49] 沈中泉,郭云桃,刘良学,等.生物钾肥的增产作用及对土壤钾平衡的影响[J].土壤学报,1988,25(1):31-39. [50] 雷波,王昌全,伍仁军,等.富钾绿肥籽粒苋对烤烟干物质积累和产量、质量的影响[J].中国烟草学报,2011,17(5):69-73. [51] TU Shu-Xin, SUN Jing-He, GUO Zhi-Fen, HUANG Min-Gi and ZHANG Ping-Gi. Genotypic variations in potassium absorption and utilization by Amaranthus spp.[J]. pedosphere, 2000, 10(4): 363-372. [52] 李廷轩,马国瑞.籽粒苋富钾基因型的根系形态和生理特性[J].作物学报,2004,30(11):1145-115l. [53] Kumar P B, Dushenkov V, Motto H, et al. Phytoextraction: the use of plants to remove heavy metals from soils[J]. Environmental science technology, 1995, 29(5): 1232-1238. [54] S.Verma ,R.S Dubey. Effect of Cadmium on Soluble Sugars and Enzymes of their Metabolism in Rice[J]. Biologia Plantarum, 2001, 44 (1): 117-123. [55] H.Clijsters and F.Van Assche . Inhibition of photosynthesis by heavy metals[J]. Photosynthesis research, 1985, 7(1): 31-40. [56] Zhang G P. Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat[J]. Journal of Plant Nutrition, 2000,23(09): 1337-1350. [57] 李凝玉,卢焕萍,李志安,等.籽粒苋对土壤中镉的耐性和积累特征[J].应用与环境生物学报,2010,16(1):028-032. [58] Toshihiro Watanabe, Yasutoshi Murata, Mitsuru Osaki. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils[J]. Communications in Soil Science and Plant Analysis, 2009, 40:(19/20): 3158-3169.
|