中国农学通报 ›› 2019, Vol. 35 ›› Issue (12): 137-143.doi: 10.11924/j.issn.1000-6850.casb18010007
所属专题: 生物技术
倪洪涛1, 张文彬2, 丁广洲2
收稿日期:
2018-01-02
修回日期:
2018-02-02
接受日期:
2018-03-22
出版日期:
2019-04-26
发布日期:
2019-04-26
通讯作者:
丁广洲
基金资助:
Received:
2018-01-02
Revised:
2018-02-02
Accepted:
2018-03-22
Online:
2019-04-26
Published:
2019-04-26
摘要: 纳米材料在农业可持续发展中发挥了重要作用,但也存在毒性。为了解世界纳米材料对植物基因水平的双向影响,为植物、可持续农业及食品安全的发展提供参考与借鉴,本文从金属(及氧化物)纳米粒子、碳纳米、量子点、氧化石墨烯和富勒烯烟灰纳米材料及纳米基因载体方面综述了纳米材料对植物基因表达的影响及遗传毒性,并探讨了未来的发展方向。
中图分类号:
倪洪涛,张文彬,丁广洲. 纳米材料对植物基因表达的影响及遗传毒性[J]. 中国农学通报, 2019, 35(12): 137-143.
张文彬 and . Effect of Nanomaterials on Plant Gene Expression and Genotoxicity[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 137-143.
[1] S Singh, K Vishwakarma, S Singh, et al. Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview[J]. Plant Gene, 2017, 11: 265-272. [2] N Arif, V Yadav, S Singh, et al. Current Trends of Engineered Nanoparticles (ENPs) in Sustainable Agriculture: An Overview[J]. J Environ Anal Toxicol, 2016, 6(5): DOI: 10.4172/2161-0525.1000397. [3] M Kah,T Hofmann. Nanopesticide research: Current trends and future priorities[J]. Environment International, 2014, 63: 224-235. [4] M Rizwan,S Ali,MF Qayyum,et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review[J]. Journal of Hazardous Materials, 2017, 322: 2-16. [5] Geisler-Lee, J., Brooks, M., Gerfen, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana[J]. Nanomaterials, 2014, 4(2): 301-318. [6] A Servin, W Elmer, A Mukherjee, et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield[J]. Journal of Nanoparticle Research, 2015, 17(2): 1-21. [7] N Zuverza-Mena, D Martínez-Fernández, W Du et al. Exposure of engineeredSnanomaterials to plants: Insights into the physiological and biochemical responses-A review[J]. Plant Physiology and Biochemistry, 2017, 110: 236-264. [8] BV Aken. Gene expression changes in plants and microorganisms exposed to nanomaterials[J]. Current Opinion in Biotechnology, 2015, 33: 206-219. [9] Khodakovskaya, M., Dervishi, E., Mahmood, M., et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009, 3(10): 3221-3227. [10] 彭小凤.纳米银对拟南芥营养生长与开花的影响[D].杭州:浙江工业大学,2013. [11] 周思雨,唐文慧,赵大球,陶俊.芍药水通道蛋白基因PIP2-2片段的克隆与表达分析[J].分子植物育种,2017,15(3):800-804. [12] Kaveh R, Li YS, Ranjbar S, et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions[J]. Environ Sci Technol, 2013, 47(18): 10637-10644. [13] Qian HF, Peng XF, Han X, Ren J, Sun LW, Fu ZW. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. J Environ Sci (China), 2013, 25(9):1947-1955. [14] Nair PMG, Chung IM. Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles[J]. Bull Environ Contam Toxicol, 2014, 92(6): 719-725. [15] Y.Y. Syu, J.H. Hung, J.C. Chen, H.W. Chuang. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression[J]. Plant Physiol. Biochem., 2014, 83: 57-64. [16] Vannini, C., Domingo, G., Onelli, E., et al. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate[J]. PLoS One, 2013, 8(7): e68752. [17] Dimkpa CO, McLean JE, Martineau N, et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix[J]. Environ Sci Technol, 2013, 47(2): 1082-1090. [18] Kumar, V., Guleria, P., Kumar, V., Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana[J]. Sci. Total Environ., 2013, 461-462(9): 462-468. [19] Burklew CE, Ashlock J, Winfrey WB, Zhang BH. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum) [J]. PLoS ONE, 2012, 7(5): e34783. [20] Frazier TP, Burklew CE, Zhang BH. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum) [J]. Funct Integr Genomics, 2014, 14(1): 75-83. [21] Landa, P., Vankova, R., Andrlova, J., et al. Nanoparticle-speci?c changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot[J]. J. Hazard. Mater., 2012, 241-242(1): 55-62. [22] 许少歆.基于拟南芥同源重组与转录基因沉默实验体系的金属(氧化物)纳米材料遗传毒理学研究[D].合肥:安徽大学,2016. [23] Lee, C.W., Mahendra, S., Zodrow, K., et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana[J]. Environ. Toxicol. Chem., 2010, 29(3): 669-675. [24] Ze YG, Liu C, Wang L, Hong MM, Hong FS. The regulation of TiO2 nanoparticles on the expression of light-harvesting complex ii and photosynthesis of chloroplasts of Arabidopsis thaliana[J]. Biol Trace Elem Res, 2011, 143(2): 1131-1141. [25] 王世华,高双成,胥华伟,等.纳米硅对Cd胁迫下水稻幼苗γ-ECS基因表达的影响[J].西南农业学报,2013,26(3): 850-853. [26] García-Sánchez, S., Bernales, I., Cristobal, S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defense and root-hair development through salicylic acid signaling[J]. BMC Genomics, 2015, 16(1): 341-356. [27] Taylor, A.F., Rylott, E.L., Anderson, C.W., Bruce, N.C. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold[J]. PLoS One, 2014, 9(4): e93793. [28] 杨中州.金属氧化物纳米材料对玉米和水稻植物毒性的评价[D].长春:东北师范大学,2016. [29] P.M.G. Nair, I.M. Chung. Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure[J]. J. Plant Growth Regul., 2015, 34(2): 350-361. [30] P.M.G. Nair, I.M. Chung. Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.) [J]. Acta Physiol. Plant., 2015, 37(1): 1-11. [31]P.M.G. Nair, S.H. Kim, I.M. Chung. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants[J]. Acta Physiol. Plant., 2014 , 36(11): 2947-2958. [32] Ma CX, Chhikara S, Xing BS, et al. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure[J]. ACS Sustain Chem Eng, 2013, 1(7): 768-778. [33] L. Tumburu, C.P. Andersen, P.T. Rygiewicz, J.R. Reichman. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants[J]. Environ. Toxicol. Chem., 2015, 34(1): 70-83. [34] Khodakovskaya, M.V., Kim, B.S., Kim, J.N., et al. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community[J]. Small, 2013, 9(1): 115-123. [35] Shen, C.X., Zhang, Q.F., Li, J., Bi, F.C., Yao, N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes[J]. Am. J. Bot., 2010, 97(10): 1602-1609. [36] Yan, W., Lien, H.-L., Koel, B.E., Zhang, W.-X. Iron nanoparticles for environmental clean-up: recent developments and future outlook[J]. Evnviron. Sci. Process. Impacts, 2013, 15(1): 63-77. [37] Yan S, Zhao L, Li H, et al. Singlewalled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression[J]. J Hazard Mater, 2013, 246-247: 110-118. [38] Lahiani, M.H., Chen, J., Irin, F., et al. Interaction of carbon nanohorns with plants: uptake and biological effects[J]. Carbon, 2015, 81(1): 607-619. [39] Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions[J]. Proc. Natl. Acad. Sci., 2011, 108(3): 1028-1033. [40] Khodakovskaya MV, de Silva K, Biris AS, et al. Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3): 2128-2135. [41] Lahiani MH, Dervishi E, Chen J, et al. Impact of carbon nanotube exposure to seeds of valuable crops[J]. ACS Appl Mater Interfaces, 2013, 5(16): 7965-7973. [42] Ghosh, M., Chakraborty, A., Bandyopadhyay, M., Mukherjee, A. Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells[J]. J. Hazard. Mater., 2011, 197: 327-336. [43] Marmiroli M, Pagano L, Sardaro MLS, Villani M, Marmiroli N. Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots[J]. Environ Sci Technol, 2014, 48(10): 5902-5909. [44] Wang Q, Zhao S, Zhao Y, Rui Q, Wang D. Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions[J]. RSC Adv, 2014, 4: 60891-60901. [45] 李鲁华.纳米粒子介导外源基因在植物中的稳定表达[D].长春:吉林农业大学,2012. [46] 刘俊.基于纳米颗粒的植物转基因及其检测研究[D].长沙:湖南大学,2005. [47] 李瑶.磁性纳米基因工程载体细胞转化方法研究[D].北京:中国农业科学院,2010. [48] 赵翔.基于四氧化三铁纳米磁转化系统的花粉介导棉花转基因技术[D].北京:中国农业科学院,2015. [49] Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects[J]. Environ Toxicol Chem, 2008, 27(9): 1825-1851. [50] Dietz KJ, Herth S: Plant nanotoxicology[J]. Trends Plant Sci, 2011, 16(11): 582-589. [51] Kang S, Herzberg M, Rodrigues D, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter[J]. Langmuir, 2008, 24(13): 6409-6413. [52] Miralles P, Church TL, Harris AT. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environ Sci Technol, 2012, 46(17): 9224-9239. [53] Meng H, Chen Z, Xing G, et al. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles[J]. Toxicol Lett, 2007, 175(1): 102-110. [54] S. Lee, H. Chung, S. Kim, I. Lee. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum[J]. Water Air Soil Pollut., 2013, 224(9): 1-11. [55] H.M. Abou-Zeid, Y. Moustafa. Physiological and cytogenetic responses of wheat and barley to silver nanopriming treatment[J]. Int. J. Appl. Biol. Pharm. Technol., 2014, 5(3): 265-278. [56] C. Vannini, G. Domingo, E. Onelli, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings[J]. J. Plant Physiol., 2014, 171(13): 1142-1148. [57] F. Mirzajani, H. Askari, S. Hamzelou, et al. Effect of silver nanoparticles on Oryza sativa L and its rhizosphere bacteria[J]. Ecotoxicol. Environ. Saf., 2013, 88(2): 48-54. [58] P.M.G. Nair, I.M. Chung. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings[J]. Chemosphere, 2014, 112(10): 105-113. [59] Patlolla AK, Berry A, May L, Tchounwou PB. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles[J]. Int J Environ Res Public Health, 2012, 9(5): 1649-1662. [60] D.H. Atha, H. Wang, E.J. Petersen, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models[J]. Environ. Sci. Technol., 2012, 48(20): 1819-1827. [61] S. Wang, H. Liu, Y. Zhang, H. Xin. The effect of CuO NPs on ROS and the cell cycle gene expression in roots of rice[J]. Environ. Toxicol. Chem., 2015, 34: 554-561. [62] D. Nagaonkar, S. Shende, M. Rai. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa[J]. Biotechnol. Prog., 2015, 31(2): 557-565. [63] M. Kumari, A. Mukherjee, N. Chandrasekaran. Genotoxicity of silver nanoparticles in Allium cepa[J]. Sci. Total Environ., 2009, 407(29): 5243–5246. [64] M. Kumari, S.S. Khan, S. Pakrashi, A. Mukherjee, N. Chandrasekaran, Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa[J]. J. Hazard. Mater., 2011, 190(1): 613–621. [65] T. Shaymurat, J. Gu, C. Xu, et al. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study[J]. Nanotoxicology, 2012, 6(3): 241-248. [66] T.C. Taranath, B.N. Patil, T.U. Santosh, B.S. Sharath. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach[J]. Environ. Sci. Pollut. Res., 2015, 22(11): 8611. [67] Lo′ pez-Moreno M, de la Rosa G, Hernandez-Viezcas J, et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environ Sci Technol, 2010, 44(19): 7315-7320. [68] Wang H, Wu F, Meng W, et al. Engineered nanoparticles may induce genotoxicity[J]. Environ Sci Technol, 2013, 47(23): 13212-13214. [69] M.R. Castiglione, L. Giorgetti, C. Geri, R. Cremonini. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. [J]. J. Nanopart. Res., 2011, 13(6): 2443-2449. [70] A. Rajeshwari, S. Kavitha, S.A. Alex, et al. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip-effects of oxidative stress generation and biouptake[J]. Environ. Sci. Pollut. Res., 2015, 22(14): 11057-11066. [71] Katti, D.R., Sharma, A., Pradham, S.M., Katti, K.S. Carbon nanotube proximity influences rice DNA[J]. Chem. Phys., 2015, 455: 17-22. |
[1] | 高伟, 张俊, 郝西, 刘娟, 臧秀旺. 河南省花生生产区域变化分析[J]. 中国农学通报, 2023, 39(1): 22-30. |
[2] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[3] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[4] | 谷书杰, 钱禛锋, 娄永明, 沈庆庆, 普凤雅, 曾丹, 马豪, 何丽莲, 李富生. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47. |
[5] | 李云峰, 姚志平, 付焱焱, 韩冬, 马树庆. 基于有效雨量亏缺的吉林省玉米各级干旱发生频率地域变化[J]. 中国农学通报, 2022, 38(35): 62-69. |
[6] | 蒋菊芳, 杨华, 胡文青, 魏育国. 持续高温干旱胁迫对春玉米生长的影响[J]. 中国农学通报, 2022, 38(32): 63-68. |
[7] | 王硕, 贾潇倩, 何璐, 李浩然, 王红光, 何建宁, 李东晓, 房琴, 李瑞奇. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展[J]. 中国农学通报, 2022, 38(29): 31-44. |
[8] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[9] | 任三学, 齐月, 田晓丽, 赵花荣. 冬小麦灌浆期光合参数及产量对土壤高湿和干旱变化的响应[J]. 中国农学通报, 2022, 38(29): 96-102. |
[10] | 程国峰, 黄达, 赵冬丽, 王立强, 程志杰. 河南省潮土区土壤肥力现状分析[J]. 中国农学通报, 2022, 38(27): 101-105. |
[11] | 李王胜, 王雪倩, 尹希龙, 石杨, 兴旺. 甜菜苗期抗旱性鉴定及指标筛选[J]. 中国农学通报, 2022, 38(21): 17-23. |
[12] | 银珊珊, 周国彦, 顾博文, 武春成, 闫立英, 谢洋. 褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J]. 中国农学通报, 2022, 38(19): 30-36. |
[13] | 孙锡鹏, 李琪, 乔云发, 胡正华, 张徐莹, 刘园园. 增温及干旱对海伦地区大豆生长发育的影响[J]. 中国农学通报, 2022, 38(15): 27-33. |
[14] | 张瑞玖, 马恢, 籍立杰, 任德志, 李双东, 张耀辉, 王莉红. 干旱胁迫对马铃薯品种生长及生理生化指标的影响[J]. 中国农学通报, 2022, 38(15): 34-39. |
[15] | 倪深海, 王亨力, 刘静楠, 顾颖. 中国农业干旱灾害特征及成因分析[J]. 中国农学通报, 2022, 38(10): 106-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||