中国农学通报 ›› 2020, Vol. 36 ›› Issue (24): 91-98.doi: 10.11924/j.issn.1000-6850.casb20190600332
所属专题: 生物技术
收稿日期:
2019-06-25
修回日期:
2019-07-10
出版日期:
2020-08-25
发布日期:
2020-08-20
通讯作者:
葛菁萍
作者简介:
康杰,男,1995年出生,研究生,研究方向:微生物学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学224信箱,Tel:0451-86609016,E-mail:基金资助:
Kang Jie1,2(), Wang Changli1,2, Ge Jingping1,2(
)
Received:
2019-06-25
Revised:
2019-07-10
Online:
2020-08-25
Published:
2020-08-20
Contact:
Ge Jingping
摘要:
为了抑制单倍体酿酒酵母H14的副产物乙醇的合成,使得2,3-丁二醇产量的提升。利用基因工程手段构建载体pWCL-pdc1,获得两端含40 bp pdc1的同源重组片段-loxP-kanMX-loxP。利用Cre/loxP技术获得pdc1缺失菌株S. cerevisiae H14-01 (△pdc1)。并以野生型菌株S. cerevisiae H14为对照,进行摇瓶发酵试验。S. cerevisiae H14-01长势明显略低于原始菌株。在整个发酵期间,2,3-丁二醇的最高产量和转化率分别为0.373±0.016 g/L和0.005 g/g,分别较原始菌株提高了37.30%和4.66%,但原始菌株没有检测到乙偶姻和2,3-BD生成。另外S. cerevisiae H14-01的乙醇转化率降低了33.24%,但甘油产量提高了15.76%。说明了碳流流向乙醇被阻断之后,会增加2,3-丁二醇的产量,同时会使此部分碳流流向甘油。因此,并为进一步获得高产2,3-丁二醇的工程微生物群体奠定了基础。
中图分类号:
康杰, 王长丽, 葛菁萍. 单倍体酿酒酵母的丙酮酸脱羧酶基因(pdc1)的敲除与鉴定[J]. 中国农学通报, 2020, 36(24): 91-98.
Kang Jie, Wang Changli, Ge Jingping. Pyruvate Decarboxylase Gene (pdc1) of Haploid Saccharomyces Cerevisiae: Knockout and Identification[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 91-98.
[1] |
Garg S K, Jain A. Fermentative production of 2,3-butanediol-a review [Review][J]. Bioresource Technology, 1995,51(3):103-109.
doi: 10.1016/0960-8524(94)00136-O URL |
[2] |
Yang T W, Rao Z M, Zhang X, et al. Effects of corn steep liquor on production of 2,3-butanediol and acetoin by Bacillus subtilis[J]. Process Biochemistry, 2013,48(11):1610-1617.
doi: 10.1016/j.procbio.2013.07.027 URL |
[3] | 付晶, 王萌, 刘维喜, 等. 生物法制备2,3-丁二醇的最新进展[J]. 化学进展, 2012,24(11):2268-2276. |
[4] |
Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol[J]. Metabolic Engineering, 2014,23(5):92-99.
doi: 10.1016/j.ymben.2014.02.003 URL |
[5] |
Bae S J, Kim S, Hahn J S. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase[J]. Scientific Reports, 2016,6:27667.
doi: 10.1038/srep27667 URL pmid: 27279026 |
[6] |
Kim S, Hahn J S. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing[J]. Metabolic Engineering, 2015,31:94-101.
doi: 10.1016/j.ymben.2015.07.006 URL pmid: 26226562 |
[7] |
Choo J H, Han C, Lee D W, et al. Molecular and functional characterization of two pyruvate decarboxylase genes, pdc1 and pdc5, in the thermotolerant yeast Kluyveromyces marxianus[J]. Applied Microbiology and Biotechnology, 2018,102(8):3723-3737.
doi: 10.1007/s00253-018-8862-3 URL pmid: 29497799 |
[8] |
Kata I, Semkiv M V, Ruchala J, et al. Overexpression of the genes pdc1 and adh1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha[J]. Yeast, 2016,33(8):471-478.
doi: 10.1002/yea.3175 URL pmid: 27256876 |
[9] |
Kim D M, Choi S-H, Ko B S, et al. Reduction of pdc1 expression in S. cerevisiae with xylose isomerase on xylose medium[J]. Bioprocess and Biosystems Engineering, 2012,35(1-2):183-189.
doi: 10.1007/s00449-011-0638-4 URL |
[10] |
Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the pdc1 and adh1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene[J]. Applied Microbiology and Biotechnology, 2009,82(5):883-890.
doi: 10.1007/s00253-008-1831-5 URL |
[11] |
Wah Tang P, San Chua P, Kee Chong S, et al. A review of gene knockout strategies for microbial cells[J]. Recent Patents on Biotechnology, 2016,9(3):176-197.
doi: 10.2174/1872208310666160517115047 URL pmid: 27185502 |
[12] | 叶广彬, 郭睿, 孙珊珊, 等. λRed技术构建产酸克雷伯氏菌乙酸激酶基因缺失突变株[J]. 黑龙江大学自然科学学报, 2018,35(03):334-341. |
[13] |
Shan Q, Zhang Y, Chen K, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015,13(6):791-800.
doi: 10.1111/pbi.12312 URL pmid: 25599829 |
[14] |
Hauschild Quintern J, Petersen B, Cost G J, et al. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives[J]. Cellular and Molecular Life Sciences: CMLS, 2013,70(16):2969-2983.
doi: 10.1007/s00018-012-1204-1 URL pmid: 23161061 |
[15] |
Kawai S, Hashimoto W, Murata K. Transformation of Saccharomyces cerevisiae and other fungi[J]. Bioeng Bugs, 2010,1(6):395-403.
doi: 10.4161/bbug.1.6.13257 URL pmid: 21468206 |
[16] | 江璐. 酿酒酵母单倍体的分离及其发酵特性研究[D]. 杨凌:西北农林科技大学, 2014. |
[17] | 王长丽, 佟天奇, 刘文娟, 等. 酿酒酵母W5单倍体的制备及其代谢水平分析[J]. 食品科学, 2018,39(08):57-63. |
[18] |
Xu W, Wang J, Li Q. Induction, separation and identification of haploid strains from industrial brewer's yeast[J]. Wei Sheng Wu Xue Bao= Acta Microbiologica Sinica, 2015,55(1):22-32.
URL pmid: 25958679 |
[19] |
Enik Z R, Karolina C, Gjuvsland A B, et al. Ancient evolutionary trade-offs between yeast ploidy states[J]. Plos Genetics, 2013,9(3):e1003388.
doi: 10.1371/journal.pgen.1003388 URL pmid: 23555297 |
[20] |
Mei G Y, Bajwa P K, Dashtban M, et al. Transfer of plasmid into the pentose-fermenting yeast Pachysolen tannophilus[J]. Journal of microbiological methods, 2018,148:97-103.
doi: 10.1016/j.mimet.2018.03.013 URL pmid: 29596958 |
[21] |
Hal A, Joel M, Elke N, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006,314(5805):1565-1568.
doi: 10.1126/science.1131969 URL pmid: 17158319 |
[22] |
Milani E A, Gardner R C, Silva F V M. Thermal resistance of Saccharomyces yeast ascospores in beers[J]. International Journal of Food Microbiology, 2015,206:75-80.
doi: 10.1016/j.ijfoodmicro.2015.04.002 URL pmid: 25996521 |
[23] |
Kim J W, Seo S O, Zhang G C, et al. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae [J]. Bioresource Technology, 2015,191:512-519.
doi: 10.1016/j.biortech.2015.02.077 URL |
[24] |
Thanh T N, Jurgen B, Bauch M, et al. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis [J]. Applied Microbiology and Biotechnology, 2010,87(6):2227-2235.
doi: 10.1007/s00253-010-2681-5 URL |
[25] |
Hubmann G, Guillouet S, Nevoigt E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2011,77(17):5857-5867.
doi: 10.1128/AEM.05338-11 URL |
[26] |
Petrov K, Petrova P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31[J]. Applied Microbiology and Biotechnology, 2009,84(4):659-665.
doi: 10.1007/s00253-009-2004-x URL |
[27] |
Petrov K, Petrova P. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations[J]. Applied Microbiology and Biotechnology, 2010,87(3):943-949.
doi: 10.1007/s00253-010-2545-z URL |
[28] | Xin F, Basu A, Weng M C, et al. Production of 2,3-Butanediol from sucrose by a Klebsiella Species[J]. BioEnergy Research, 2015,9(1):15-22. |
[29] |
Kim S J, Seo S O, Park Y C, et al. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2014,192:376-382.
doi: 10.1016/j.jbiotec.2013.12.017 URL pmid: 24480571 |
[30] |
Siemerink M A, Kuit W, Lopez Contreras A M, et al. D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum[J]. Applied and Environmental Microbiology, 2011,77(8):2582-2588.
doi: 10.1128/AEM.01616-10 URL pmid: 21335380 |
[31] | 龙定沛, 谭兵, 赵爱春, 等. Cre/lox位点特异性重组系统在高等真核生物中的研究进展[J]. 遗传, 2012,34(02):177-189. |
[1] | 王长丽, 廖巍, 叶广彬, 葛菁萍, 刘磊, 马毓坚, 黄霞, 宾晓芸. 编码酿酒酵母丙酮酸脱羧酶(Pdc6)基因克隆及其生物信息学分析[J]. 中国农学通报, 2021, 37(9): 103-108. |
[2] | 石会玲, 周宇航, 何平, 黄蒙蒙, 邵帅, 葛菁萍, 凌宏志. 阴沟肠杆菌乳酸脱氢酶基因缺失突变株的构建及其生物学特性[J]. 中国农学通报, 2021, 37(23): 29-37. |
[3] | 张弛, 吕雨泽, 邓利廷, 孙健, 葛菁萍. 外源添加乙偶姻对酿酒酵母产2,3-丁二醇及其菌株的影响[J]. 中国农学通报, 2021, 37(2): 20-27. |
[4] | 刘磊, 李娜, 姜雪雍, 孙健, 吕雨泽, 葛菁萍. CRISPR/Cas9技术敲除酿酒酵母gpd2基因对产2,3-丁二醇的影响[J]. 中国农学通报, 2020, 36(29): 69-77. |
[5] | 丁昊, 刘文娟, 孙健, 刘磊, 平文祥, 葛菁萍. 高产2,3-丁二醇的潜在酿酒酵母菌株筛选[J]. 中国农学通报, 2020, 36(24): 107-115. |
[6] | 杨智宇, 佟天奇, 刘磊, 平文祥, 葛菁萍. 外源添加乙偶姻对酿酒酵母W5/W141产2,3-丁二醇的影响[J]. 中国农学通报, 2020, 36(23): 19-25. |
[7] | 杨智宇, 佟天奇, 刘磊, 平文祥, 葛菁萍. 外源添加乙酸对酿酒酵母(Saccharomyces cerevisiae)产2,3-丁二醇影响初探[J]. 中国农学通报, 2020, 36(21): 104-112. |
[8] | 郑文涌, 杨涛, 李双全, 吕常旭, 石敏, 马立保, 晏向华. 新型酿酒酵母培养物对育肥猪生产性能、肌肉品质和肠道微生物的影响[J]. 中国农学通报, 2020, 36(21): 145-154. |
[9] | 佟天奇,裴芳艺,王长丽,孙 健,葛菁萍. 酿酒酵母(Saccharomyces cerevisiae)WBG3菌株发酵特性研究[J]. 中国农学通报, 2018, 34(32): 49-56. |
[10] | 谢金东,杨燕燕,林 玮,俞春英,周建华,刘德强,王训立. 基于子代基因型鉴定技术研究FMR1敲除 对C57BL/6小鼠繁殖性能的影响[J]. 中国农学通报, 2015, 31(11): 68-71. |
[11] | 李聪. 酿酒酵母培养条件及发酵培养基的优化[J]. 中国农学通报, 2014, 30(9): 302-306. |
[12] | 吴建勇 黄华磊. 微小毛霉(Mucor.pusillus)△6-脂肪酸脱饱和酶基因的克隆与表达[J]. 中国农学通报, 2010, 26(2): 64-67. |
[13] | 张冬梅,石振华,林歧,鲁国东,王宗华. 一个假定的稻瘟病菌RhoGEF蛋白参与营养生长和产孢过程的调控[J]. 中国农学通报, 2009, 25(11): 161-164. |
[14] | 刘延琳,蒋思欣,何秀萍,李 华,张博润. Construction of Recombinant Expression Plasmid pYELmleA of mleA Gene and Expression in Saccharomyces cerevisiae[J]. 中国农学通报, 2005, 21(4): 48-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||