中国农学通报 ›› 2020, Vol. 36 ›› Issue (26): 50-54.doi: 10.11924/j.issn.1000-6850.casb20190800574
收稿日期:
2019-08-27
修回日期:
2019-10-19
出版日期:
2020-09-15
发布日期:
2020-09-14
通讯作者:
蔡柏岩
作者简介:
路成成,女,1994年出生,山东济南人,在读硕士,研究方向:微生物生态学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,E-mail:基金资助:
Lu Chengcheng1,2,3(), Cai Baiyan1,2(
)
Received:
2019-08-27
Revised:
2019-10-19
Online:
2020-09-15
Published:
2020-09-14
Contact:
Cai Baiyan
摘要:
旨在深入了解丛枝菌根(Arbuscular mycorrhizae,AM)真菌在植物吸收和转运磷元素方面的机制。本研究归纳了近年来关于AM真菌能够促使植物改善磷营养(如磷酸盐转运蛋白、磷酸酶基因等)相关的最新研究成果,着重分析了AM真菌的菌根吸收途径,总结了国内外关于AM真菌对水溶性无机磷、难溶性无机磷和有机磷等3种土壤磷存在形态下的利用机制。最后指出该领域仍存在的一些问题以及未来的研究侧重点。
中图分类号:
路成成, 蔡柏岩. AM真菌改善植物磷营养吸收和转运机制的研究进展[J]. 中国农学通报, 2020, 36(26): 50-54.
Lu Chengcheng, Cai Baiyan. AM Fungi Improving the Mechanism of Phosphorus Uptake and Transport in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(26): 50-54.
[1] | 李岳峰. 丛枝菌根改善旱作水稻/绿豆间作系统中作物生长和氮磷利用的研究[D]. 南京:南京农业大学, 2008. |
[2] | 王东雪. AM真菌和施磷量对白术生长和品质的影响[D]. 保定:河北大学, 2006. |
[3] |
Vand K T J, Gioacchini P, Kuikman P J, et al. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation[J]. Soil Biology & Biochemistry, 2001,33(15):2115-2124.
doi: 10.1016/S0038-0717(01)00145-6 URL |
[4] |
Kim S Y, Geary P M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2001,44(11-12):61.
URL pmid: 11804158 |
[5] | 赵昕, 阎秀峰. 丛枝菌根对喜树幼苗生长和氮、磷吸收的影响[J]. 植物生态学报, 2006,30(6):947-953. |
[6] | 齐俊香. 不同水分及磷用量条件下接种AM真菌对丹参生长及品质的影响[D]. 保定:河北大学, 2016. |
[7] | 王志莉, 刘辉, 薛元霞, 等. VA菌根真菌对苹果幼苗生长发育的影响[J]. 广东农业科学, 2013,40(17):38-40. |
[8] | 夏婷婷, 王志鹏, 张柳婵, 等. 磷水平对接种丛枝菌根真菌甜玉米苗期生长的影响[J]. 工业微生物, 2017,47(3):49-52. |
[9] | Sharif M, Claassen N. Action Mechanisms of Arbuscular Mycorrhizal Fungi in Phosphorus Uptake by Capsicum annuum L.[J]. Pedosphere, 2011,21(4):502-511. |
[10] | 王晓伟, 左楠楠, 金海如. 不同氮磷浓度对AM真菌生长和养分吸收的影响[J]. 浙江农业学报, 2013,25(2):328-332. |
[11] | 姚青. 植物对VA菌根的依赖性差异及菌根活化难溶性磷酸盐的机理研究[D]. 北京:中国农业大学, 2000. |
[12] |
Tarraf W, Ruta C, Tagarelli A, et al. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of, Salvia officinalis, L.[J]. Industrial Crops and Products, 2017,102:144-153.
doi: 10.1016/j.indcrop.2017.03.010 URL |
[13] | 谢贤安. 丛枝菌根共生体磷信号转运受体的发现及其分子机制的研究[D]. 武汉:华中农业大学, 2013. |
[14] |
Javot H, Penmetsa R V, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2007,104(5):1720-1725.
doi: 10.1073/pnas.0608136104 URL |
[15] | Drew E A, Murray R S, Smith S E, et al. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes[J]. Plant & Soil, 2003,251(1):105-114. |
[16] |
Liu F, Xu Y, Han G, et al. Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation[J]. Plant & Cell Physiology, 2018,59(8):1683-1694.
doi: 10.1093/pcp/pcy094 URL pmid: 29767790 |
[17] |
Smith S E, Jakobsen I, GrÃ, nlund M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011,156(3):1050-1057.
doi: 10.1104/pp.111.174581 URL pmid: 21467213 |
[18] |
Brígido C, Tuinen D V, Brito I, et al. Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium[J]. Soil Biology & Biochemistry, 2017,112:237-247.
doi: 10.1016/j.soilbio.2017.05.018 URL |
[19] |
Réka Nagy, Drissner D, Amrhein N, et al. Mycorrhizal Phosphate Uptake Pathway in Tomato is Phosphorus-Repressible and Transcriptionally Regulated[J]. New Phytologist, 2009,181(4):950-959.
doi: 10.1111/j.1469-8137.2008.02721.x URL pmid: 19140941 |
[20] |
Drissner D, Kunze G, Callewaert N, et al. Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal Symbiosis[J]. Science, 2007,318(5848):265-268.
doi: 10.1126/science.1146487 URL pmid: 17932296 |
[21] | 郭艳娥, 李芳, 李应德, 等. AM真菌促进植物吸收利用磷元素的机制[J]. 草业科学, 2016,33(12):2379-2390. |
[22] |
López-García Á, Varela-Cervero S, Vasar M, et al. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities[J]. Molecular Ecology, 2017,26:6948-6959.
doi: 10.1111/mec.14403 URL pmid: 29110362 |
[23] | 李晓林, 姚青. VA菌根与植物的矿质营养[J]. 自然科学进展, 2000,10(6):524-531. |
[24] | 甄莉娜, 王润梅, 周凤, 等. 不同施磷水平下AM真菌对羊草生长的影响[J]. 中国草地学报, 2015(6):56-61. |
[25] | 孟祥霞, 王幼珊. 丛枝菌根真菌对香椿实生苗生长的影响[J]. 青岛农业大学学报:自然科学版, 2000,17(3):170-172. |
[26] | 王菲, KerteszMA,冯固.菌丝际土壤有机磷周转的微生物调控机制[A]// 中国菌物学会2015年学术年会论文摘要集[C]. 2015. |
[27] | 蔡宣梅, 张秋芳, 郑伟文. VA菌根菌与重氮营养醋杆菌双接种对超甜玉米生长的影响[J]. 福建农业学报, 2004,19(3):156-159. |
[28] |
徐丽娇, 姜雪莲, 郝志鹏. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 2017(8):815-825.
doi: 10.17521/cjpe.2017.0018 URL |
[29] |
Grace E J, Cotsaftis O, Tester M, et al. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.[J]. New Phytologist, 2010,181(4):938-949.
doi: 10.1111/j.1469-8137.2008.02720.x URL pmid: 19140934 |
[30] |
Recorbet G, Abdallah C, Renaut J, et al. Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence[J]. New Phytologist, 2013,199(1):26-40.
doi: 10.1111/nph.12287 URL pmid: 23638913 |
[31] |
Saito K, Kuga-Uetake Y, Saito M. Acidic vesicles in living hyphae of an arbuscular mycorrhizal fungus,Gigaspora margarita[J]. Plant and Soil, 2004,261(1-2):231-237.
doi: 10.1023/B:PLSO.0000035574.54040.c5 URL |
[32] |
Tatsuhiro E, Sally E S. Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi[J]. New Phytologist, 2010,149(3):555-563.
doi: 10.1046/j.1469-8137.2001.00040.x URL |
[33] | Gómez-Ariza J, Balestrini R, Novero M, et al. Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots[J]. Biology & Fertility of Soils, 2009,45(8):845-853. |
[34] |
Fiorilli V, Lanfranco L, Bonfante P. The expression ofGintPT, the phosphate transporter ofRhizophagus irregularis,depends on the symbiotic status and phosphate availability[J]. Planta, 2013,237(5):1267-1277.
doi: 10.1007/s00425-013-1842-z URL |
[35] |
Balestrini R, Gomezariza J, Lanfranco L, et al. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells[J]. Molecular Plant-Microbe Interactions, 2007,20(9):1055-1062.
doi: 10.1094/MPMI-20-9-1055 URL pmid: 17849708 |
[36] |
Benedetto A, Magurno F, Bonfante P, et al. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungusGlomus mosseae[J]. Mycorrhiza, 2005,15(8):620-627.
doi: 10.1007/s00572-005-0006-9 URL |
[37] |
Xie X, Lin H, Peng X, et al. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont[J]. Mol. Plant, 2016,9(12):1583-1608.
doi: 10.1016/j.molp.2016.08.011 URL pmid: 27688206 |
[38] |
Hegeman C E. A Novel Phytase with Sequence Similarity to Purple Acid Phosphatases Is Expressed in Cotyledons of Germinating Soybean Seedlings[J]. Plant physiology, 2001,126(4):1598-1608.
doi: 10.1104/pp.126.4.1598 URL pmid: 11500558 |
[39] |
Li C, Gui S, Yang T, et al. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J]. ANN BOT, 2012,109(1):275-285.
doi: 10.1093/aob/mcr246 URL pmid: 21948626 |
[40] | 韩卓. 不同基因型玉米根系对低磷胁迫响应机理初步研究[D]. 扬州:扬州大学, 2012. |
[41] | 刘春艳, 吴强盛, 邹英宁. AM真菌对枳吸收磷和分泌磷酸酶的影响[J]. 菌物学报, 2017,36(7):942-949. |
[42] | 刘进法. 丛枝菌根真菌促进枳活化吸收难溶性磷酸盐的研究[D]. 武汉:华中农业大学, 2008. |
[43] | 刘进法, 王鹏, 罗园, 等. 低磷胁迫下AM真菌对枳实生苗吸磷效应及根系分泌有机酸的影响[J]. 亚热带植物科学, 2010,39(1):9-13. |
[44] |
Yang H, Li Y, Huang J. Effect of phosphorus supply and signal inhibitors on oxalate efflux in ectomycorrhizal fungi[J]. Acta Microbiologica Sinica, 2015,55(6):788.
URL pmid: 26563005 |
[45] | 黄金芳, 肖华山. VA菌根的研究进展及应用展望[J]. 安徽农学通报, 2006,12(2):26-28. |
[46] |
Chen C R, Condron L M, Davis M R, et al. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.)[J]. Soil biol biochem, 2002,34(4):487-499.
doi: 10.1016/S0038-0717(01)00207-3 URL |
[47] | 宋勇春, 冯固, 李晓林. 不同磷源对红三叶草根际和菌根际磷酸酶活性的影响[J]. 应用生态学报, 2003,14(5):781-784. |
[48] | Amaya-Carpio L, Davies F T, Fox T, et al. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynjournal, root phosphatase activity, nutrition, and growth ofIpomoea carneassp.fistulosa[J]. Photosynthetica (Prague), 2009,47(1):1-10. |
[49] |
Xie X, Weng B, Cai B, et al. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil[J]. Applied Soil Ecology, 2014,75:162-171.
doi: 10.1016/j.apsoil.2013.11.009 URL |
[50] |
Abdel-Fattah G M, Asrar A A, Al-Amri S M, et al. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants[J]. Photosynthetica, 2014,52(4):581-588.
doi: 10.1007/s11099-014-0067-0 URL |
[51] | 吴会会, 邹英宁, 吴强盛. 干旱胁迫下菌根真菌对枳根系形态、内源激素和土壤结构的影响[J]. 中国南方果树, 2018,47(3):14-17. |
[52] |
Tan Z, Hu Y, Lin Z. PhPT4Is a Mycorrhizal-Phosphate Transporter Suppressed by Lysophosphatidylcholine in Petunia Roots[J]. Plant Molecular Biology Reporter, 2012,30(6):1480-1487.
doi: 10.1007/s11105-012-0467-x URL |
[1] | 李少杰, 肖清山, 宋福强, 王歆. 丛枝菌根(AM)真菌扩培技术研究进展[J]. 中国农学通报, 2022, 38(9): 115-122. |
[2] | 陈芳玲, 樊娅萍, 贺苗苗, 王倡宪. 丛枝菌根真菌在药用植物上的应用研究进展[J]. 中国农学通报, 2022, 38(12): 55-60. |
[3] | 马俊卿, 侯宁, 孙晨瑜, 杨怡森, 覃圣峰, 王勇, 刘璐, 廖虹霖, 黄京华. 宿主不同对丛枝菌根真菌扩繁效应的影响[J]. 中国农学通报, 2022, 38(1): 7-14. |
[4] | 汪茜, 宋娟, 李冬萍, 刘增亮, 车江旅, 陈廷速. 丛枝菌根真菌及深色有隔内生真菌对大田生姜生长效应分析[J]. 中国农学通报, 2021, 37(6): 62-67. |
[5] | 曾端香, 袁涛, 王莲英. 丛枝菌根真菌(AMF)接种剂种类和接种时期对牡丹菌根化组培苗培养的影响[J]. 中国农学通报, 2021, 37(30): 53-58. |
[6] | 赵旭, 宋清晖, 王晓慧, 王学刚, 冯宇涵, 孙思淼, 李洪涛, 常伟, 宋福强. 几种有机肥对玉米光合特性及土壤酶活性的影响[J]. 中国农学通报, 2021, 37(3): 36-42. |
[7] | 高文礼, 再努尔·吐尔逊, 桑钰, 马晓东. 丛枝菌根真菌对植物氮素吸收作用的研究进展[J]. 中国农学通报, 2021, 37(27): 53-58. |
[8] | 贾艳艳, 诸俊, 顾大路, 杨文飞, 杜小凤, 孙爱侠, 钱新民, 文廷刚, 朱云林. 接种丛枝菌根真菌对麦秆分解和旱稻生长的影响[J]. 中国农学通报, 2020, 36(30): 1-6. |
[9] | 张 童,隋 心,宋福强. 基于Web of Science研究丛枝菌根真菌(AMF)态势分析[J]. 中国农学通报, 2019, 35(12): 144-150. |
[10] | 杨超,蔡柏岩. AM真菌对连作作物根系代谢产物的影响[J]. 中国农学通报, 2018, 34(14): 35-39. |
[11] | 周修腾,王 雪,黄璐琦,陈 敏,肖文娟,杨光,李鹏英,华国栋,陈美兰. 丛枝菌根真菌对丹参木质部结构及防御相关基因的影响[J]. 中国农学通报, 2017, 33(4): 98-104. |
[12] | 宋福强,牛丽纯,常伟,范晓旭,刘璇,高扬. 盐碱地引种沙枣根瘤内生菌及根际土壤AM 真菌的多样性[J]. 中国农学通报, 2016, 32(7): 6-13. |
[13] | 周修腾,康利平,李鹏英,杨 光,王 雪,陈美兰. UPLC-MS/MS测定AM真菌侵染丹参植物脱落酸含量[J]. 中国农学通报, 2016, 32(12): 92-97. |
[14] | 张丽 张传光 谷林静 张仕颖 张乃明 黄志能 夏运生. 接种Glomus mosseae对磷石膏施用烤烟苗期生长及磷、硫、砷吸收的影响[J]. 中国农学通报, 2014, 30(4): 162-169. |
[15] | 杨凤铃 赵方贵 刘洪庆 刘新. 不同烟草栽培地区土壤理化性质与AM真菌分布关系[J]. 中国农学通报, 2011, 27(1): 116-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||