中国农学通报 ›› 2021, Vol. 37 ›› Issue (26): 88-92.doi: 10.11924/j.issn.1000-6850.casb2021-0121
所属专题: 农业气象
于贺1(), 谢洪宝1, 陈一民2, 王耀1, 隋跃宇2, 焦晓光1(
)
收稿日期:
2021-02-02
修回日期:
2021-05-08
出版日期:
2021-09-15
发布日期:
2021-09-30
通讯作者:
焦晓光
作者简介:
于贺,女,1996年出生,黑龙江富锦人,硕士,研究方向:土壤生态。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号,Tel:0451-86609487,E-mail: 基金资助:
Yu He1(), Xie Hongbao1, Chen Yimin2, Wang Yao1, Sui Yueyu2, Jiao Xiaoguang1(
)
Received:
2021-02-02
Revised:
2021-05-08
Online:
2021-09-15
Published:
2021-09-30
Contact:
Jiao Xiaoguang
摘要:
氮素是限制植物生长的重要营养元素之一,其在土壤中转化程度受多种因素影响,作为中、高纬度或高海拔地区土壤氮转化的重要驱动力,冻融作用对于土壤氮转化过程也存在极大影响。本文基于国内外已有研究成果,概述了土壤冻融循环次数、结冻持续时间以及结冻强度对于土壤氮转化过程的影响。总结出冻融格局的改变对土壤氮转化关系的一般规律:随着冻融格局的改变,均有利于土壤氮的矿化;冻融强度的增加可显著提高土壤硝态氮的含量;冻融格局的改变也会提高N2O的排放。
中图分类号:
于贺, 谢洪宝, 陈一民, 王耀, 隋跃宇, 焦晓光. 冻融作用对土壤氮转化影响的研究进展[J]. 中国农学通报, 2021, 37(26): 88-92.
Yu He, Xie Hongbao, Chen Yimin, Wang Yao, Sui Yueyu, Jiao Xiaoguang. Effects of Freeze-thaw on Soil Nitrogen Conversion: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 88-92.
[1] | 陈哲, 杨世琦, 张晴雯, 等. 冻融对土壤氮素损失及有效性的影响[J]. 生态学报, 2016, 36(4):1083-1094. |
[2] |
Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry, 2004, 36(4):641-654.
doi: 10.1016/j.soilbio.2003.12.007 URL |
[3] | 张科利, 刘宏远. 东北黑土区冻融侵蚀研究进展与展望[J]. 中国水土保持科学, 2018, 16(1):17-24. |
[4] |
Iwata Y, Hirota T, Hayashi M, et al. Effects of frozen soil and snow cover on cold-season soil water dynamics in Tokachi, Japan[J]. Hydrological Processes, 2010, 24(13):1755-1765.
doi: 10.1002/hyp.v24:13 URL |
[5] | 伍星, 刘慧峰, 张令能, 等. 雪被和土壤水分对典型半干旱草原土壤冻融过程中CO2和N2O排放的影响[J]. 生态学报, 2014, 34(19):5484-5493. |
[6] |
Sharma S, Szele Z, Schilling R, et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil[J]. Applied and Environmental Microbiology, 2006, 72(3):2148-2154.
doi: 10.1128/AEM.72.3.2148-2154.2006 URL |
[7] |
Yang Y L, Wu F Z, Yang W Q, et al. Effects of snow pack removal on soil hydrolase enzyme activities in an alpine Abies faxoniana forest of western Sichuan[J]. Acta Ecologica Sinica, 2012, 32(22) : 7045-7052.
doi: 10.5846/stxb URL |
[8] |
McGarity J W. Effect of freezing of soil on denitrification[J]. Nature, 1962, 196(4861):1342-1343.
doi: 10.1038/1961342a0 URL |
[9] | 张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3):505-511. |
[10] | 张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6):1499-1507. |
[11] | 蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5):1032-1042. |
[12] | 陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004(5):126-133. |
[13] | 张海欧, 韩霁昌, 张扬, 等. 冻融交替对砒砂岩与沙复配土壤氮素的影响[J]. 水土保持通报, 2017, 37(6):22-27. |
[14] | 吕欣欣, 孙海岩, 汪景宽, 等. 冻融交替对土壤氮素转化及相关微生物学特性的影响[J]. 土壤通报, 2016, 47(5):1265-1272. |
[15] |
Neilson C B, Groffman P M, Hamburg S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Sci Soc Am J, 2001, 65(6):1723-1730.
doi: 10.2136/sssaj2001.1723 URL |
[16] | 周幼吾, 郭东信, 邱国庆. 中国冻土[M]. 北京: 科学出版社, 2000. |
[17] | 郑思嘉. 莫莫格湿地冻融期土壤水热变化及氮转化关系的研究[D]. 长春:吉林农业大学, 2019. |
[18] | 贾国晶, 周永斌, 代力民, 等. 冻融对长白山森林土壤碳氮矿化的影响[J]. 生态环境学报, 2012, 21(4):624-628. |
[19] |
Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology & Biochemistry, 2002, 34(10):1495-1505.
doi: 10.1016/S0038-0717(02)00121-9 URL |
[20] |
Sulkava P, Huhta V. effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralization in boreal forest soil[J]. Applied Soil Ecology, 2003, 22:225-239.
doi: 10.1016/S0929-1393(02)00155-5 URL |
[21] |
Amador J A, Gorres J H, Savin M C. Role of soil water content in the carbon and nitrogen dynamics of Lumbricusterrestris L. burrow soil[J]. Applied Soil Ecology, 2005, 28:15-22.
doi: 10.1016/j.apsoil.2004.06.009 URL |
[22] |
Groffman P M, Driscoll C T, Fahey T J, et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem[J]. Biogeochemistry, 2001, 56(2):135-150.
doi: 10.1023/A:1013039830323 URL |
[23] | 李源. 东北黑土氮素转化和酶活性对水热条件变化的响应[D]. 长春:东北师范大学, 2015. |
[24] |
Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze-thaw cycles typical of winter alpine conditions: Implications for N and P availability[J]. Applied Soil Ecology, 2007, 35(1):247-255.
doi: 10.1016/j.apsoil.2006.03.012 URL |
[25] | Hentschel K, Borken W, Matzner E. Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil[J]. J Plant Nutre Soil Sci, 2008, 171(5):699-706. |
[26] | 胡霞, 尹鹏, 王智勇, 等. 雪被厚度和积雪周期对土壤氮素动态影响的初步研究[J]. 生态环境学报, 2014, 23(4):593-597. |
[27] | 周旺明, 秦胜金, 刘景双, 等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报, 2011, 30(4):806-811. |
[28] |
Deluca T H, Keeney D R, Mccarty G W. Effect of freeze-thaw events on mineralization of soil nitrogen[J]. Biology and Fertility of Soils, 1992, 14(2):116-120.
doi: 10.1007/BF00336260 URL |
[29] |
Nielsen C B, Groffman P M, Hamburg S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65(6):1723-1730.
doi: 10.2136/sssaj2001.1723 URL |
[30] |
Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3):187-195.
doi: 10.1016/S0929-1393(02)00093-8 URL |
[31] |
Hyvnen R, Persson X, Anderssor S, et al. Impact of Long-Tetm Nitrogen Additio on Carbon Stocks in Trees and Soils in Northern Europe[J]. Biogeochemistry, 2008, 89(1):121-137.
doi: 10.1007/s10533-007-9121-3 URL |
[32] | 徐欢, 王芳芳, 李婷, 等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报, 2020, 40(10):3168-3182. |
[33] | 宋长春, 王毅勇, 王跃思, 赵志春. 季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J]. 环境科学, 2005(4):7-12. |
[34] | 刘晶静, 吴伟祥, 丁颖, 等. 氨氧化古菌及其在氮循环中的重要作用[J]. 应用生态学报, 2010, 21(8):2154-2160. |
[35] |
Smith J, Wagner Riddle C, Dunfield K. Season and management related changes in the diversity of nitrifyingand denitrifying bacteria over winter and spring[J]. Applied Soil Ecology, 2010, 44:138-146.
doi: 10.1016/j.apsoil.2009.11.004 URL |
[36] |
Neilsen C B, Groffman P M, Hamburg S P, et al. Free- zing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65:1723-1730.
doi: 10.2136/sssaj2001.1723 URL |
[37] | 殷睿, 蒋先敏, 徐振锋, 等. 季节性雪被对川西亚高山岷江冷杉林冬季土壤氮矿化和淋溶的影响[J]. 水土保持学报, 2013, 27(5):138-143. |
[38] |
Fan J A, Dise N B, Matzner E, et al. Nitrogen input to- gether with ecosystem nitrogen enrichment predict nitrate leaching from Europen forest[J]. Global Change Biology, 2002, 8:1028-1033.
doi: 10.1046/j.1365-2486.2002.00532.x URL |
[39] |
Jackson Blake L, Helliwell R C, Britton A J, et al. Con- trols on solution nitrogen along an altitudinal gradient in the Scottish uplands[J]. Science of the Total Environment, 2012, 431:100-108.
doi: 10.1016/j.scitotenv.2012.05.019 URL |
[40] | 徐俊俊, 吴彦, 张新全, 等. 冻融交替对高寒草甸土壤微生物量氮和有机氮组分的影响[J]. 应用与环境生物学报, 2011, 17(1):57-62. |
[41] |
Sorensen P O, Templer P H, Christenson L, et al. Reduced snow cover alters root-microbe interacyions and decreases nitrification rates in a northern hardwood forest[J]. Ecology, 2016, 97(12):3359.
doi: 10.1002/ecy.1599 pmid: 27912011 |
[42] | 王风, 朱岩, 陈思, 等. 冻融循环对典型地带土壤速效氮磷及酶活性的影响[J]. 农业工程学报, 2013, 29(24):118-123. |
[43] | Chai Y J, Zheng X B, E S Z, et al. Effects of freeze-thaw on aggregate stability and the organic carbon and nitrogen enrichment rations in aggregate fractions[J]. Soil Use&Management, 2015, 30(4):507-516. |
[44] | 胡仲豪. 冻融过程对天山森林土壤氮素动态及氮矿化速率的影响[D]. 乌鲁木齐:新疆大学, 2018. |
[45] |
Ludwig B, Wolf I, Teepe R. Contribution of nitrification and denitrification to the emission of N2O in a freeze - thaw event in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(6):678-684.
doi: 10.1002/(ISSN)1522-2624 URL |
[46] | 韩瑛. 典型黑土区土壤温室气体排放特征研究[D]. 哈尔滨:东北林业大学, 2014. |
[47] | 杨红露, 秦纪洪, 孙辉. 冻融交替对土壤CO2 及N2O效应的研究进[J]. 土壤, 2010, 42(4):519-525. |
[48] |
Papen H, Butterbach-Bahl K. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a Nsaturated spruce and beech forest ecosystem in Germany1. N2O emission[J]. Journal of Geophysical Research, 1999, 104(D15):18487-18503.
doi: 10.1029/1999JD900293 URL |
[49] | Wu, X, Bruggemann. et al. Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2 in a temperate Norway spruce forest[J]. 2010. |
[50] | Yao Z, Wu X, Wolf B, et al. Soil-atmosphere exchange potential of NO and N2O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freeze-thaw, and drying-wetting events[J]. Journal of Geophysical Research: Atmospheres, 2010. |
[51] |
Elberling B. Seasonal trends of soil CO2 dynamics in a soil subject to freezing[J]. Journal of Hydrology, 2003, 276(1):159-175.
doi: 10.1016/S0022-1694(03)00067-2 URL |
[52] |
Luo G J, Brug gemann N, Wolf B, et al. Decadal variability of soil CO2,NO,N2O,and CH4 fluxes at the Hoglwald Forest, Germany[J]. Biogeosciences, 2012, 9(5):1741-1763.
doi: 10.5194/bg-9-1741-2012 URL |
[53] |
Teepe R, Ludwig B. Variability of CO2 and N2O emissions during freeze-thaw cycles: results of model experiments on undisturbed forest-soil cores[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(2):153-159.
doi: 10.1002/(ISSN)1522-2624 URL |
[54] | 徐星凯, 段存涛, 吴浩浩, 等. 冻结强度和冻结时间对高寒区温带森林土壤微生物量、可浸提的碳和氮含量及N2O和CO2排放量的影响[J]. 中国科学:地球科学, 2015, 45(11):1698-1716. |
[55] |
Koponen H T, Martikainen P J. Soil water content and freezing temperature affect freeze-thaw related N2 O production in organic soil[J]. Nutrient Cycling in Agroecosystems, 2004, 69(3):213-219.
doi: 10.1023/B:FRES.0000035172.37839.24 URL |
[56] | Sun Hui, Qin J H, Wu Yang. Freeze-thaw cycles and their impact son ecological process: a review[J]. Soils, 2008, 40(40):505-509. |
[57] | 孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤, 2008(4):505-509. |
[1] | 徐翎清, 李佳佳, 常晓, 张云龙, 刘大丽. 土壤氮矿化相关机理的研究进展[J]. 中国农学通报, 2022, 38(34): 97-101. |
[2] | 王秋红,周建朝,王孝纯,宋柏权,邓艳红. 不同基因型甜菜根际土壤有机氮分布特征研究[J]. 中国农学通报, 2019, 35(5): 107-114. |
[3] | 葛晓敏,王瑞华,唐罗忠,贾志远,朱 玲,李 勇. 不同温湿度条件下杨树人工林土壤氮矿化特征研究[J]. 中国农学通报, 2015, 31(10): 208-213. |
[4] | 赵明 蔡葵 孙永红 赵征宇 朱准平. 污泥生物质炭的碳、氮矿化特性及其对大棚番茄产量品质的影响[J]. 中国农学通报, 2014, 30(1): 215-220. |
[5] | 陆琳 米艳华 王树会 邹炳礼 余志勇. 不同质地植烟土壤氮素矿化的差异性[J]. 中国农学通报, 2011, 27(3): 147-153. |
[6] | 韩晓飞 郑文冉 徐畅 慈恩 高明 杨超 马啸. 重庆市植烟区不同肥力植烟土壤氮素矿化特性研究[J]. 中国农学通报, 2010, 26(24): 188-192. |
[7] | 张文君,刘兆辉,江丽华,郑福丽,仲子文,王 梅,林海涛,宋效宗. 氮素对大蒜产量影响和氮素供应目标值的研究[J]. 中国农学通报, 2008, 24(7): 254-259. |
[8] | 彭 宇,易建华,蒲文宣,张新要. 长期稻草还田对烟田土壤氮素矿化特征的影响[J]. 中国农学通报, 2006, 22(10): 230-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||