中国农学通报 ›› 2022, Vol. 38 ›› Issue (13): 30-35.doi: 10.11924/j.issn.1000-6850.casb2021-0534
所属专题: 生物技术
收稿日期:
2021-05-19
修回日期:
2021-07-26
出版日期:
2022-05-05
发布日期:
2022-06-08
通讯作者:
曾汉来
作者简介:
方学良,男,1995年出生,硕士研究生,研究方向为水稻育性生理。通信地址:430070 湖北省武汉市洪山区狮子山街1号 华中农业大学植物科学技术学院,E-mail: 基金资助:
FANG Xueliang(), FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai(
)
Received:
2021-05-19
Revised:
2021-07-26
Online:
2022-05-05
Published:
2022-06-08
Contact:
ZENG Hanlai
摘要:
5-氮杂胞苷是一种DNA甲基化抑制剂,可以通过降低DNA的甲基化水平来调节基因的表达,从而对生物的生长发育进行表观遗传调控,其在动物与医学领域已有广泛的研究与应用,近年来在植物基因表达调节方面的研究与应用报道也逐渐增多。本研究对植物DNA甲基化的类型、引发、影响因素和抑制剂的作用进行了概述,重点对5-氮杂胞苷对植物基因表达水平的调节和作用效果进行了阐述。并对其在水稻、小麦、棉花等重要作物生长发育、逆境适应、育性调节及次生代谢的影响与作用进行归纳,可为植物基因表达表观调节研究与应用提出新的关注点。
中图分类号:
方学良, 付铭, 陈正, 白云秀, 何莹, 曾汉来. 5-氮杂胞苷调节植物基因表达研究进展与应用展望[J]. 中国农学通报, 2022, 38(13): 30-35.
FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect[J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35.
功能 | 5-Aza处理效应实例 | 参考文献 |
---|---|---|
调控生长发育 | 浸泡处理油菜种子与幼苗,油菜茎尖甲基化水平下降并促进了分化;喷施处理萝卜,使其提前进入花期,提前开花;喷施处理菊花,促进花期提前、改变花冠大小;喷施处理花椰菜,促进加快现蕾和开花;喷施处理牡丹,解除休眠和促进发芽;处理甘蓝幼苗和水稻种子,有植株矮化和叶片变小的效果 | [ |
调控逆境胁迫 | 低浓度浸泡小麦种子和白菜种子,提高了小麦盐害耐受力,增强白菜耐热性;处理大麦种子,增强大麦苗期湿害抗性;处理洋麻,增强耐盐性;处理苜蓿,减少种子长度、鲜重和干重,降低对盐害的耐受性 | [ |
调控植物育性 | 处理棉花植株,促进花药发育,提高花粉育性;小麦花药离体培养中用5-Aza处理,可以使愈伤组织产生率提升38%,单倍体植株的再生速率提高50%;处理小麦生理型雄性不育系,不育系育性得到部分恢复 | [ |
调控植物体 光合作用 | 处理黄瓜幼苗,可明显减缓低温对细胞膜的伤害,抑制磷脂过氧化,促进光合作用;处理菊花根系,促进对NO3-的吸收及运输效率,提高叶片叶绿素含量,净光合速率上升 | [ |
调节品质性状 | 处理石斛组培苗,增加多糖和生物碱含量,编码生物碱相关酶的基因表达量均显著上调,提升品质和药用价值;处理小麦幼苗,使小麦籽粒中的谷蛋白含量增加到30%,可增加面团弹性和口感;处理桃子,可以诱导桃子果肉中花色素苷的积累,增加视觉感和食用价值 | [ |
其他调节作用 | 处理小麦萌发的种子,低浓度促进根系发生,高浓度抑制根系发生;处理油菜花芽,中高浓度会产生毒害作用,阻碍花芽正常分化;处理转基因的烟草组织或者细胞,显著增加转基因的表达量;处理转基因大豆,促进大豆芽再生;处理水稻,增强对白叶枯抗病性 | [ |
功能 | 5-Aza处理效应实例 | 参考文献 |
---|---|---|
调控生长发育 | 浸泡处理油菜种子与幼苗,油菜茎尖甲基化水平下降并促进了分化;喷施处理萝卜,使其提前进入花期,提前开花;喷施处理菊花,促进花期提前、改变花冠大小;喷施处理花椰菜,促进加快现蕾和开花;喷施处理牡丹,解除休眠和促进发芽;处理甘蓝幼苗和水稻种子,有植株矮化和叶片变小的效果 | [ |
调控逆境胁迫 | 低浓度浸泡小麦种子和白菜种子,提高了小麦盐害耐受力,增强白菜耐热性;处理大麦种子,增强大麦苗期湿害抗性;处理洋麻,增强耐盐性;处理苜蓿,减少种子长度、鲜重和干重,降低对盐害的耐受性 | [ |
调控植物育性 | 处理棉花植株,促进花药发育,提高花粉育性;小麦花药离体培养中用5-Aza处理,可以使愈伤组织产生率提升38%,单倍体植株的再生速率提高50%;处理小麦生理型雄性不育系,不育系育性得到部分恢复 | [ |
调控植物体 光合作用 | 处理黄瓜幼苗,可明显减缓低温对细胞膜的伤害,抑制磷脂过氧化,促进光合作用;处理菊花根系,促进对NO3-的吸收及运输效率,提高叶片叶绿素含量,净光合速率上升 | [ |
调节品质性状 | 处理石斛组培苗,增加多糖和生物碱含量,编码生物碱相关酶的基因表达量均显著上调,提升品质和药用价值;处理小麦幼苗,使小麦籽粒中的谷蛋白含量增加到30%,可增加面团弹性和口感;处理桃子,可以诱导桃子果肉中花色素苷的积累,增加视觉感和食用价值 | [ |
其他调节作用 | 处理小麦萌发的种子,低浓度促进根系发生,高浓度抑制根系发生;处理油菜花芽,中高浓度会产生毒害作用,阻碍花芽正常分化;处理转基因的烟草组织或者细胞,显著增加转基因的表达量;处理转基因大豆,促进大豆芽再生;处理水稻,增强对白叶枯抗病性 | [ |
[1] |
VISWANATHAN C, JIAN-KANG Z. Epigenetic regulation of stress responses in plants[J]. Current opinion in plant biology, 2009, 12(2):133-139.
doi: 10.1016/j.pbi.2008.12.006 URL |
[2] | 高弘扬, 许丹芸, 周良云, 等. 植物DNA甲基化研究进展[J]. 湖北林业科技, 2020, 49(1):39-43,52. |
[3] | GEHRING M, HENIKO H. DNA methylation dynamics in plant genomes[J]. Biochim Biophys Acta, 2007, 1769(5-6):276-286. |
[4] |
FINNEGAN E J, KOVAC K A. Plant DNA methyltransferases[J]. Plant molecular biology, 2000, 43(2-3):189-201.
doi: 10.1023/A:1006427226972 URL |
[5] |
KANKEL M W, RAMSEY D E, STOKES T L, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003, 163(3):1109-1122.
doi: 10.1093/genetics/163.3.1109 URL |
[6] |
HENDERSON I R, JACOBSEN S E. Epigenetic inheritance in plants[J]. Nature, 2007, 447(7143):418-424.
doi: 10.1038/nature05917 URL |
[7] | EL-TANTAWY, AHMED-ABDALLA, SOLÍS, et al. Changes in DNA methylation levels and nuclear distribution patterns after microspore reprogramming to embryogenesis in barley[J]. Cytogenetic & genome research, 2014, 143(1-3):200-208. |
[8] | 张今今, 褚会娟, 张逸, 等. 植物DNA甲基化及在禾本科作物中的研究进展[J]. 陕西农业科学, 2010, 56(4):131-134. |
[9] | KOMIVI D, MARIE A M, RONG Z, et al. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame[J]. Plant science, 2018, 227:207-217. |
[10] |
SHARMA R, VISHAL P, KAUL S, et al. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern[J]. Plant cell reports, 2017, 36(1):203-217.
doi: 10.1007/s00299-016-2072-1 URL |
[11] |
QIAN Y, HU W, LIAO J, et al. The dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage[J]. Biochemical and biophysical research communications, 2019, 512(4):742-749.
doi: 10.1016/j.bbrc.2019.03.150 URL |
[12] |
FAN S, LIU H F, LIU J, et al. Systematic analysis of the DNA methylase and demethylase gene families in rapeseed (Brassica napus L.) and their expression variations after salt and heat stresses[J]. International journal of molecular sciences, 2020, 21(3):953-953.
doi: 10.3390/ijms21030953 URL |
[13] |
GULSHAN K, KUMARI R U, KUMAR S A, et al. Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple (Malus × domestica Borkh.)[J]. PLoS One, 2016, 11(2):e0149934.
doi: 10.1371/journal.pone.0149934 URL |
[14] |
STEWARD N. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress[J]. Journal of biological chemistry, 2002, 277(40):37741-37746.
doi: 10.1074/jbc.M204050200 URL |
[15] |
BURN J E, BAGNALL D J, METZGER J D, et al. DNA methylation, vernalization, and the initiation of flowering[J]. Proceedings of the national academy of sciences, 1993, 90(1):287-291.
doi: 10.1073/pnas.90.1.287 URL |
[16] |
LIU Z, XIE Z, JONES W, et al. Curcumin is a potent DNA hypomethylation agent[J]. Bioorganic & medicinal chemistry letters, 2009, 19(3):706-709.
doi: 10.1016/j.bmcl.2008.12.041 URL |
[17] |
LEE W J. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids[J]. Molecular pharmacology, 2005, 68(4):1018-1030.
doi: 10.1124/mol.104.008367 URL |
[18] | LIU Z, LIU S, XIE Z, et al. Modulation of DNA methylation by a sesquiterpene lactone parthenolide[J]. Journal of pharmacology & experimental therapeutics, 2009, 329(2):505-514. |
[19] | 王红, 孙莉, 陈培荣, 等. 三氧化二砷对MRL/lpr自发性狼疮小鼠脾脏单个核细胞DNMT1及CD11a表达的影响[J]. 浙江医学, 2008(11):1191-1192. |
[20] |
KUMARI K, RAI M P, BANSAL N, et al. Analysis of γ-Tocopherol methyl transferase3 promoter activity and study of methylation patterns of the promoter and its gene body[J]. Plant physiology and biochemistry, 2019, 144:375-385.
doi: 10.1016/j.plaphy.2019.09.044 URL |
[21] | XIAO Xinlong, ZHANG Jieqiong, LI Tao, et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis[J]. Journal of integrative plant biology, 2019, 61(2):24-33. |
[22] |
ZHANG H, LANG Z, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nature reviews molecular cell biology, 2018, 19(8):489-506.
doi: 10.1038/s41580-018-0016-z URL |
[23] |
O’Malley R C, HUANG S C, SONG L, et al. Cistrome and epicistrome features shape the regulatory DNA landscape[J]. Cell, 2016, 165(5):1280-1292.
doi: 10.1016/j.cell.2016.04.038 URL |
[24] |
HÉBERLÉ L, BARDET A F. Sensitivity of transcription factors to DNA methylation[J]. Essays in biochemistry, 2019, 63(6):727-741.
doi: 10.1042/EBC20190033 URL |
[25] |
ZHAO Q Q, LIN R N, et al. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes[J]. Journal of Integrative Plant Biology, 2019, 61(2):120-139.
doi: 10.1111/jipb.12767 URL |
[26] |
LI D W, CHEN J K. The battle between TET proteins and DNA methylation for the right cell[J]. Trends in cell biology, 2018, 28(12):973-975.
doi: 10.1016/j.tcb.2018.10.002 URL |
[27] |
ZHANG X, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6):1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[28] |
SHIM S, LEE H G, PARK O S, et al. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis[J]. Epigenetics, 2021, 15:1-18.
doi: 10.1080/15592294.2019.1644879 URL |
[29] |
ZILBERMAN D, GEHRING M, TRAN R K, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers interdependence between methylation and transcription[J]. Nature genetics, 2007, 39(1):61-69.
doi: 10.1038/ng1929 URL |
[30] |
MAUNAKEA A K, NAGARAJAN R P, BILENKY M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters[J]. Nature, 2010, 466(7303):253-257.
doi: 10.1038/nature09165 URL |
[31] |
NERI F, RAPELLI S, KREPELOVA A, et al. Intragenic DNA methylation prevents spurious transcription initiation[J]. Nature, 2017, 543(7643):72-77.
doi: 10.1038/nature21373 URL |
[32] |
CHOI J, LYONS D B, KIM M Y, et al. DNA methylation and histone H1 jointly repress transposable elements and aberrant intragenic transcripts[J]. Molecular cell, 2019, 77(2):310-323.
doi: 10.1016/j.molcel.2019.10.011 URL |
[33] | HUH I, ZENG J, PARK T, et al. DNA methylation and transcriptional noise[J]. Epigenetics & chromatin, 2013, 6(1):9-9. |
[34] |
VENKATESH S, LI H, GOGOL M M, et al. Selective suppression of antisense transcription by Set2-mediated H3K36 methylation[J]. Nature communications, 2016, 7(1):13610.
doi: 10.1038/ncomms13610 URL |
[35] | GATZMANN F, FALCKENHAYN C, GUTEKUNST J, et al. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes[J]. Epigenetics & chromatin, 2018, 11(1):57. |
[36] |
PENG Y, SUN X F, LIANG Y. Role of DNA methylation on human CTSG in dermatomyositic myoideum[J]. Cell biology international, 2020, 44(12):2409-2415.
doi: 10.1002/cbin.11447 URL |
[37] | TAISUKE N. Gene body methylation involved in leaf development[J]. Plant & cell physiology, 2018, 59(7):1288-1289. |
[38] |
SEYMOUR D K, GAUT B S. Phylogenetic shifts in gene body methylation correlate with gene expression and reflect trait conservation[J]. Molecular biology and evolution, 2020, 37(1):31-43.
doi: 10.1093/molbev/msz195 URL |
[39] |
GONG Z Z, MORALES-RUIZ T, ARIZA R R, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111(6): 803-814.
doi: 10.1016/S0092-8674(02)01133-9 URL |
[40] |
TSAI H C, LI H L, VAN NESTE L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells[J]. Cancer cell, 2012, 21(3):430-446.
doi: 10.1016/j.ccr.2011.12.029 URL |
[41] |
FUKS F, HURD P J, WOLF D, et al. The methyl-CpG-binding protein MECP2 links DNA methylation to histone methylation[J]. Journal of biological chemistry, 2003, 278(6):4035-4040.
doi: 10.1074/jbc.M210256200 URL |
[42] | 宋峥, 喻艳, 汪瑞清, 等. 低温和5-氮胞苷对油菜花芽分化和DNA甲基化的影响[J]. 农业与技术, 2019, 39(5):30-32. |
[43] | 汪炳良, 李水凤, 曾广文, 等. 5-azaC对萝卜茎尖DNA甲基化和开花的影响[J]. 核农学报, 2005, 19(4):265-268. |
[44] | 汪媛媛. 两种DNA甲基化抑制剂对菊花表型和DNA甲基化的影响[D]. 开封: 河南大学, 2012:19-27. |
[45] | 袁建民, 木万福, 麻继仙, 等. DNA甲基化抑制剂5-azaC对花椰菜生长发育的影响[J]. 江西农业学报, 2018, 30(2):42-45. |
[46] |
ZHANG Y, SI F, WANG Y, et al. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony[J]. Plant physiology and biochemistry, 2020, 147:91-100.
doi: 10.1016/j.plaphy.2019.12.010 URL |
[47] | KING G J. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine[J]. Journal of pomology & horticultural science, 1995, 70(2):333-342. |
[48] | SANO H, KAMADA I, YOUSSEFIAN S, et al. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA[J]. Molecular & general genetics, 1990, 220(3):441-447. |
[49] |
ZHONG L, XU Y H, WANG J B. The effect of 5-azacytidine on wheat seedlings responses to NaCl stress[J]. Biologia plantarum, 2010, 54(4):753-756.
doi: 10.1007/s10535-010-0135-7 URL |
[50] | 许会会, 刘维信, 孙艳, 等. 5-氮杂胞苷对白菜幼苗DNA甲基化和耐热性的影响[J]. 园艺学报, 2012, 39(3):567-573. |
[51] | 徐延浩, 侯泽豪, 张文英, 等. 5-氮杂胞苷和丁酸钠对大麦苗期耐湿性的影响[J]. 广东农业科学, 2015, 42(24):26-30. |
[52] |
LI Z, HU Y, CHANG M, et al. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.)[J]. Chemosphere, 2021, 271:129562.
doi: 10.1016/j.chemosphere.2021.129562 URL |
[53] | AL-LAWATI A, AL-BAHRY S, VICTOR R, et al. Salt stress alters DNA methylation levels in alfalfa (Medicago spp)[J]. Genetics and molecular research, 2016, 15(1):15018299. |
[54] | ZHANG M, ZHANG X X, GUO L P, et al. Single-base resolution methylome of cotton cytoplasmic male sterility system reveals epigenomic changes in response to high-temperature stress during anther development[J]. Journal of experimental botany, 2020, 71(3):951-969. |
[55] | BELCHEV I, TCHORBADJIEVA M, PANTCHEV I. Effect of 5-Azacytidine on callus induction and plant regeneration potential in anther culture of wheat (Triticum aestivum L.)[J], Bulgarian journal of plant physiology, 2004, 30(1-2):45-50. |
[56] | 巴青松. 小麦生理型雄性不育DNA甲基化调控育性机理研究[D]. 杨凌: 西北农林科技大学, 2014:38-46. |
[57] | 邢潇晨, 索琳格, 肖春燕, 等. 5-氮杂胞苷对低温胁迫下黄瓜幼苗光合作用的影响[J]. 干旱地区农业研究, 2017, 35(6):116-123. |
[58] | 于媛媛, 郭芸珲, 温立柱, 等. 菊花基因组DNA甲基化水平对根系硝态氮吸收的影响[J]. 植物生理学报, 2018, 54(5):886-894. |
[59] | 倪竹君, 殷丽丽, 应奇才, 等. 5-氮杂胞苷对石斛生物活性成分的影响[J]. 浙江农业科学, 2014, 1(7):1018-1020. |
[60] | VANYUSHIN B F. Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell[J]. Biochemistry, 2005, 70(5):488-499. |
[61] |
ZHU Y, ZHANG B, ALLAN A C, et al. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach[J]. The plant journal, 2020, 102(5):965-976.
doi: 10.1111/tpj.14680 URL |
[62] |
SAHU P P, PANDEY G, SHARMA N, et al. Epigenetic mechanisms of plant stress responses and adaptation[J]. Plant cell reports, 2013, 32(8):1151-1159.
doi: 10.1007/s00299-013-1462-x URL |
[63] | 侯泽豪, 杨飞, 商水根, 等. 丁酸钠和5-氮杂胞苷对大麦、水稻、玉米、小麦种子萌发及芽苗期生长的影响[J]. 江苏农业科学, 2017, 45(22):73-77. |
[64] | SHAO W, HUGHES K W. 5-Azacytidine increases the activity of neomycin phosphotransferase II in transgenic Nicotiana tabacum: A posttranslational mechanism may play a role[J]. Plant cell tissue & organ culture, 1995, 41(1):49-60. |
[1] | 张成才, 向增旭. 茅苍术试管苗继代培养的ISSR及MSAP分析[J]. 中国农学通报, 2021, 37(12): 72-78. |
[2] | 王斯靓,郭九峰,王淑妍. 电磁辐射引起的表观遗传效应研究进展[J]. 中国农学通报, 2018, 34(31): 43-48. |
[3] | 王 杰,徐友信,刁其玉,张乃锋. 非孟德尔遗传模式:表观遗传学及其应用研究进展[J]. 中国农学通报, 2016, 32(14): 37-43. |
[4] | 杨美娜 杨瑰丽 郭涛 刘永柱 张建国 陈志强 王慧. 逆境胁迫下植物 DNA甲基化及其在抗旱育种中的研究进展[J]. 中国农学通报, 2013, 29(6): 6-11. |
[5] | 沈芳 殷玲 刘振国 沈杰 吉挺. 蜜蜂级型分化的研究进展[J]. 中国农学通报, 2013, 29(32): 1-5. |
[6] | 骆薇 曾凡锁 詹亚光. 木本植物生长发育及繁殖过程中DNA甲基化模式重建[J]. 中国农学通报, 2010, 26(24): 35-41. |
[7] | 龚志云,于恒秀,裔传灯. 植物体细胞无性系变异的研究进展[J]. 中国农学通报, 2008, 24(7): 65-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||