中国农学通报 ›› 2023, Vol. 39 ›› Issue (1): 142-150.doi: 10.11924/j.issn.1000-6850.casb2022-0663
吴松1(), 周甜2, 杨立宾2,3(), 江云兵2, 潘虹2, 刘永志3, 杜君3
收稿日期:
2022-08-19
修回日期:
2022-09-25
出版日期:
2023-01-05
发布日期:
2022-12-27
通讯作者:
杨立宾
作者简介:
吴松,女,1982年出生,黑龙江哈尔滨人,副研究员,博士在读,主要从事科技情报研究工作。通信地址:150028 哈尔滨市松北区创新三路600号 黑龙江省科学技术情报研究院,Tel:0451-51920677,E-mail:基金资助:
WU Song1(), ZHOU Tian2, YANG Libin2,3(), JIANG Yunbing2, PAN Hong2, LIU Yongzhi3, DU Jun3
Received:
2022-08-19
Revised:
2022-09-25
Online:
2023-01-05
Published:
2022-12-27
Contact:
YANG Libin
摘要:
通过对国内外叶际微生物研究领域的分析和比较,明确叶际微生物的研究现状和热点,为该领域的进一步研究提供参考。采用文献计量学分析方法,利用可视化分析工具VOSviewer对中国知网收录的114篇文献和Web of Science核心合集数据库收录的521篇文献进行相关分析。叶际微生物相关研究领域的年发文量总体呈现上升趋势,且年平均英文文献数量总体高于中文文献数量,美国、中国和德国的发文量居于前列。其中中国和澳大利亚的合作最为紧密,美国与其他国家的合作最多。研究机构中中国科学院发文量最多,并且与其他研究机构的合作较多。该领域中白志辉(Bai Z H)的发文量最多,且各作者所在团队内部合作较为密切;虽然英文文献中白志辉和金德才(Jin D C)所在团队间有紧密合作,但从整体上看,无论是在中文文献中还是在英文文献中各团队间仍缺乏合作。关于叶际微生物,CNKI和WOS中的文献均对其群落结构和多样性展开了研究,中文文献目前只倾向于探究叶际微生物在植物病害、生物防治和重金属污染方面的作用,但整体研究尚浅,而英文文献则更为广泛且深入地探讨了微生物与植物、微生物和环境之间的关系。研究结果表明,目前关于叶际微生物的研究尚处于起步阶段,叶际微生物群落结构和多样性是该阶段的研究热点和研究方向。
中图分类号:
吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150.
WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms[J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150.
高频关键词 | 频次 | 高频关键词 | 频次 |
---|---|---|---|
phyllosphere | 323 | microbial community | 80 |
diversity | 175 | rhizosphere | 74 |
community | 126 | bacterial community | 66 |
bacteria | 107 | biological control | 64 |
microbiome | 86 | colonization | 58 |
soil | 85 | identification | 58 |
leaf | 82 | growth | 55 |
plant | 81 | ecology | 53 |
高频关键词 | 频次 | 高频关键词 | 频次 |
---|---|---|---|
phyllosphere | 323 | microbial community | 80 |
diversity | 175 | rhizosphere | 74 |
community | 126 | bacterial community | 66 |
bacteria | 107 | biological control | 64 |
microbiome | 86 | colonization | 58 |
soil | 85 | identification | 58 |
leaf | 82 | growth | 55 |
plant | 81 | ecology | 53 |
[1] | 杨宽, 王慧玲, 叶坤浩, 等. 叶际微生物及与植物互作的研究进展[J]. 云南农业大学学报(自然科学), 2021, 36(1):155-164. |
[2] |
MEYER K M, LEVEAU J H J. Microbiology of the phyllosphere: A playground for testing ecological concepts[J]. Oecologia, 2012, 168(3):621-629.
doi: 10.1007/s00442-011-2138-2 pmid: 21983641 |
[3] |
ANDREWS J H, HARRIS R F. The ecology and biogeography of microorganisms on plant surfaces[J]. Annual review of phytopathol, 2000, 38(1):145-180.
doi: 10.1146/annurev.phyto.38.1.145 URL |
[4] |
LINDOW S E, BRANDL M T. Microbiology of the phyllosphere[J]. Applied and environmental microbiology, 2003, 69(4):1875-1883.
doi: 10.1128/AEM.69.4.1875-1883.2003 pmid: 12676659 |
[5] |
KADIVAR H, STAPLETON A E. Ultraviolet radiation alters maize phyllosphere bacterial diversity[J]. Microbial ecology, 2003, 45(4):353-361.
pmid: 12704563 |
[6] |
COPELAND J K, YUAN L J, LAYEGHIFARD M, et al. Seasonal community succession of the phyllosphere microbiome[J]. Molecular plant-microbe interactions, 2015, 28(3):274-285.
doi: 10.1094/MPMI-10-14-0331-FI pmid: 25679538 |
[7] |
FINKEL O M, BURCH A Y, LINDOW S E, et al. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree[J]. Applied and environmental microbiology, 2011, 77(21):7647-7655.
doi: 10.1128/AEM.05565-11 pmid: 21926212 |
[8] |
GAO X N, SUN H, LIU R, et al. The impact of sugarcane brown rust and host resistance on the phyllosphere bacterial community[J]. Sugar Tech, 2022, 24(5):1420-1429.
doi: 10.1007/s12355-021-01088-x URL |
[9] | 李慧娟. 青岛市3种植物叶表面颗粒物微形态及叶际细菌群落结构研究[D]. 青岛: 青岛理工大学, 2021. |
[10] | WAGI S, AHMED A. Phyllospheric plant growth promoting bacteria[J]. Journal of bacteriology & mycology, 2017, 5:215-216. |
[11] |
SALEEM M, MECKES N, PERVAIZ Z H, et al. Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress[J]. Frontiers in microbiology, 2017, 8:41.
doi: 10.3389/fmicb.2017.00041 pmid: 28163703 |
[12] | 张俊, 张华, 常畅, 等. 基于文献计量的凋落物研究现状及热点分析[J]. 生态学报, 2020, 40(6):2166-2173. |
[13] | 赵飞, 艾春艳, 游越, 等. 基于文献计量开展高校科研评估的探索与思考——以北京大学科研竞争力评估为例[J]. 大学图书馆学报, 2014, 32(1):97-101. |
[14] | 王敏, 万长秀, 田苓华, 等. 基于CiteSpace的我国运动想象疗法的可视化分析[J]. 中国医药导报, 2020, 17(18):28-32. |
[15] | 高懋芳, 邱建军, 刘三超, 等. 基于文献计量的农业面源污染研究发展态势分析[J]. 中国农业科学, 2014, 47(6):1140-1150. |
[16] | 汪小飞, 张家伟, 刘铁宁, 等. 小麦抗倒伏研究动态追踪——基于WoS和CNKI数据库的文献计量分析[J]. 中国农学通报, 2022, 38(5):132-142. |
[17] | 王堽, 路正禹, 郝王森, 等. 甜菜研究现状的CiteSpace计量分析[J]. 中国农学通报, 2021, 37(13):147-152. |
[18] | 李嘉慧. 基于文献计量学的国内外茶叶农药残留研究综述[J]. 中国农学通报, 2019, 35(10):148-157. |
[19] | 王敏, 张志强. 知识发现研究文献定量分析[J]. 图书情报工作, 2008(4):29-31,61. |
[20] | 杨永军. 基于Web of Science土壤微生物多样性领域文献计量分析[J]. 防护林科技, 2021(4):66-68,71. |
[21] | 向立刚, 汪汉成, 郑苹, 等. 一种未知真菌性叶斑病发病烟叶真菌群落分析[J]. 中国烟草科学, 2021, 42(1):40-46. |
[22] | 刘天波, 滕凯, 周向平, 等. 拮抗菌群对烟草野火病的防治效果及叶际微生物群落多样性的影响[J]. 微生物学通报, 2021, 48(8):2643-2652. |
[23] | 贾彤, 郭婷艳, 王瑞宏, 等. 铜尾矿白羊草重金属含量对叶际和根际真菌群落的影响[J]. 环境科学, 2020, 41(11):5193-5200. |
[24] | 周之栋, 徐建华. 公路沿线不同植物叶际微生物群落结构及重金属污染比较[J]. 江苏农业科学, 2021, 49(18):215-221. |
[25] |
RASTOGI G, SBODIO A, TECH J J, et al. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. The ISME journal, 2012, 6(10):1812-1822.
doi: 10.1038/ismej.2012.32 URL |
[26] |
PATI B R, CHANDRA A K. Diazotrophic bacterial population and other associated organisms on the phyllosphere of some crop plants[J]. Zentralblatt für mikrobiologie, 1993, 148(6):392-402.
doi: 10.1016/S0232-4393(11)80304-5 URL |
[27] | ARUN K D, SABARINATHAN K G, GOMATHY M, et al. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria[J]. Journal of basic microbiology, 2020, 60(9):768-786. |
[28] | SMEE M R, REAL-RAMIREZ I, ZULUAGA A C, et al. Epiphytic strains of Pseudomonas syringae kill diverse aphid species[J]. Applied and environmental microbiology, 2021, 87(11):e00017-e00021.. |
[29] |
IBEKWE A M, SHOUSE P J, GRIEVE C M. Quantification of survival of Escherichia coli O157: H7 on plants affected by contaminated irrigation water[J]. Engineering in life sciences, 2006, 6(6):566-572.
doi: 10.1002/elsc.200620157 URL |
[30] | XU N, QU Q, ZHANG Z Y, et al. Effects of residual S-metolachlor in soil on the phyllosphere microbial communities of wheat (Triticum aestivum L.)[J]. Science of the total environment, 2020, 748:141342. |
[31] | HU H, LI X, WU S, et al. Effects of long-term exposure to oxytetracycline on phytoremediation of swine wastewater via duckweed systems[J]. Journal of hazardous materials, 2021, 414:125508. |
[32] | ZENG H, XU H, LIU G, et al. Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava[J]. Journal of hazardous materials, 2021, 411:125143. |
[33] |
DU Y Y, ZHANG D W, ZHOU D G, et al. The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil-plant system[J]. AMB express, 2021, 11(1):1-13.
doi: 10.1186/s13568-020-01157-6 URL |
[34] | FRANZETTI A, GANDOLFI I, BESTETTI G, et al. Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area[J]. Journal of hazardous materials, 2020, 384:121021. |
[35] | IMPERATO V, KOWALKOWSKI L, PORTILLO-ESTRADA M, et al. Characterisation of the Carpinus betulus L. phyllomicrobiome in urban and forest areas[J]. Frontiers in microbiology, 2019:1110. |
[36] |
MALITI C M, BASILE D V, CORPE W A. Effects of Methylobacterium spp. strains on rice Oryza sativa L. callus induction, plantlet regeneration, and seedlings growth in vitro[J]. The journal of the torrey botanical society, 2005, 132(2):355-367.
doi: 10.3159/1095-5674(2005)132[355:EOMSSO]2.0.CO;2 URL |
[37] |
ZANG C, LIN Q, XIE J, et al. The biological control of the grapevine downy mildew disease using Ochrobactrum sp.[J]. Plant protection science, 2019, 56(1):52-61.
doi: 10.17221/87/2019-PPS URL |
[38] |
WALLACE J, LAFOREST-LAPOINTE I, KEMBEL S W. Variation in the leaf and root microbiome of sugar maple (Acer saccharum) at an elevational range limit[J]. Peer J, 2018, 6(12):e5293.
doi: 10.7717/peerj.5293 URL |
[39] | NAYAK S, BEHERA S, DASH P K. Potential of microbial diversity of coastal sand dunes: need for exploration in Odisha Coast of India[J]. The scientific world journal, 2019:1-9. |
[40] |
BILLAR DE ALMEIDA A, CONCAS J, CAMPOS M D, et al. Endophytic fungi as potential biological control agents against grapevine trunk diseases in Alentejo Region[J]. Biology, 2020, 9(12):420.
doi: 10.3390/biology9120420 URL |
[41] |
WANG H, ZHANG R, DUAN Y, et al. The endophytic strain Trichoderma asperellum 6S-2: An efficient biocontrol agent against apple replant disease in China and a potential plant-growth-promoting fungus[J]. Journal of fungi, 2021, 7(12):1050.
doi: 10.3390/jof7121050 URL |
[42] |
YANG C H, CROWLEY D E, BORNEMAN J, et al. Microbial phyllosphere populations are more complex than previously realized[J]. Proceedings of the National Academy of Sciences, 2001, 98(7):3889-3894.
doi: 10.1073/pnas.051633898 URL |
[43] |
GDANETZ K, NOEL Z, TRAIL F. Influence of plant host and organ, management strategy, and spore traits on microbiome composition[J]. Phytobiomes journal, 2021, 5(2):202-219.
doi: 10.1094/PBIOMES-08-19-0045-R URL |
[44] | IGUCHI H, SATO I, SAKAKIBARA M, et al. Distribution of methanotrophs in the phyllosphere[J]. Bioscience, biotechnology, and biochemistry, 2012:120281. |
[45] |
ALI N, SORKHOH N, SALAMAH S, et al. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants[J]. Journal of environmental management, 2012, 93(1):113-120.
doi: 10.1016/j.jenvman.2011.08.014 pmid: 22054577 |
[46] |
KEMBEL S W, O’CONNOR T K, ARNOLD H K, et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest[J]. Proceedings of the National Academy of Sciences, 2014, 111(38):13715-13720.
doi: 10.1073/pnas.1216057111 URL |
[47] | 刘利玲, 李会琳, 蒙振思, 等. 青杨雌雄株叶际微生物群落多样性和结构的差异[J]. 微生物学报, 2020, 60(3):556-569. |
[48] |
WHIPPS J M, HAND P, PINK D, et al. Phyllosphere microbiology with special reference to diversity and plant genotype[J]. Journal of applied microbiology, 2008, 105(6):1744-1755.
doi: 10.1111/j.1365-2672.2008.03906.x pmid: 19120625 |
[49] |
GOMES T, PEREIRA J A, BENHADI J, et al. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem[J]. Microbial ecology, 2018, 76(3):668-679.
doi: 10.1007/s00248-018-1161-9 pmid: 29500493 |
[50] |
HARROP B L, MARKS J C, WATWOOD M E. Early bacterial and fungal colonization of leaf litter in Fossil Creek, Arizona[J]. Journal of the North American Benthological Society, 2009, 28(2):383-396.
doi: 10.1899/08-068.1 URL |
[51] | XU W, SHI L, CHAN O, et al. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques[J]. PLoS One, 2013, 8(12):e84613. |
[52] |
TLÁSKAL V, VOŘÍŠKOVÁ J, BALDRIAN P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia[J]. FEMS microbiology ecology, 2016, 92(11):fiw177.
doi: 10.1093/femsec/fiw177 URL |
[53] |
VOŘÍŠKOVÁ J, BALDRIAN P. Fungal community on decomposing leaf litter undergoes rapid successional changes[J]. ISME journal, 2013, 7(3):477-486.
doi: 10.1038/ismej.2012.116 pmid: 23051693 |
[1] | 汪小飞, 张家伟, 刘铁宁, 任小龙, 贾志宽, 蔡铁. 小麦抗倒伏研究动态追踪——基于WoS和CNKI数据库的文献计量分析[J]. 中国农学通报, 2022, 38(5): 132-142. |
[2] | 王爱姣, 叶春蕾, 牛为民, 车发展. 2002—2022年国内外虎杖研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(35): 134-140. |
[3] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[4] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[5] | 吴宇炼, 范慧艳, 汪彦欣, 徐凯逸, 邵承媛. 植物免疫诱抗剂研究文献计量可视化分析[J]. 中国农学通报, 2022, 38(27): 138-146. |
[6] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. |
[7] | 金涛涛, 赵明, 毛洁莹, 罗天宇, 刘玮, 王琼. 基于CiteSpace的球囊霉素相关土壤蛋白知识图谱分析[J]. 中国农学通报, 2022, 38(24): 100-108. |
[8] | 陈莹, 吴繁琦, 耿业业, 白钰, 王桂荣, 杨慧婕, 孙志蓉. 基于文献计量学的根瘤固氮对豆科植物影响研究可视化分析[J]. 中国农学通报, 2022, 38(18): 35-43. |
[9] | 王敏, 段海燕, 姜恭好, 李忠梅. 水稻花药培养技术的研究进展[J]. 中国农学通报, 2022, 38(14): 18-22. |
[10] | 汤俊超, 吴宜文, 张姚, 曹庆穗, 吴照学, 夏礼如, 鲍恩财. 浅谈“光伏+农业”产业的发展模式[J]. 中国农学通报, 2022, 38(11): 144-152. |
[11] | 吴文彦, 程智超, 李梦莎, 隋心, 曾宪楠. 基于Web of Science的根瘤菌发展研究[J]. 中国农学通报, 2021, 37(9): 109-117. |
[12] | 王堽, 路正禹, 郝王森, 耿贵. 甜菜研究现状的CiteSpace计量分析[J]. 中国农学通报, 2021, 37(13): 147-152. |
[13] | 姜璐, 刘洋, 贺慧, 曲莹, 张璐. 褪黑素对叶片衰老影响的研究现状—基于文献计量学的分析[J]. 中国农学通报, 2021, 37(12): 158-164. |
[14] | 于显枫, 赵记军. CNKI期刊视域下降解地膜研究态势文献计量分析[J]. 中国农学通报, 2020, 36(8): 119-126. |
[15] | 王晓慧, 隋心, 范晓旭, 宋福强. 印度梨形孢文献计量学研究态势分析[J]. 中国农学通报, 2020, 36(8): 127-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||